MANAGING BIG DATA [As per Choice Based Credit System (CBCS) scheme] (Effective from the academic year 2016 -2017) **SEMESTER - II** Subject Code 16LNI422 / 16SCE21 / 16SCN24 / IA Marks 20 **16SCS21** / 16SIT41 / 16SSE422 Number of Lecture Hours/Week 04 Exam Marks 80 Total Number of Lecture Hours 50 **Exam Hours** 03

CREDITS – 04

Course objectives: This course will enable students to

- Define big data for business intelligence
- Analyze business case studies for big data analytics
- Explain managing of Big data Without SQL
- Develop map-reduce analytics using Hadoop and related tools

Module -1	Teaching
	Hours
UNDERSTANDING BIG DATA: What is big data – why big data –.Data!, Data Storage	10Hours
and Analysis, Comparison with Other Systems, Rational Database Management System,	
Grid Computing, Volunteer Computing, convergence of key trends – unstructured data –	
industry examples of big data – web analytics – big data and marketing – fraud and big	
data – risk and big data – credit risk management – big data and algorithmic trading – big	
data and healthcare – big data in medicine – advertising and big data – big data	
technologies – introduction to Hadoop – open source technologies – cloud and big data –	
mobile business intelligence - Crowd sourcing analytics - inter and trans firewall	
analytics.	
Module -2	
NOSQL DATA MANAGEMENT: Introduction to NoSQL – aggregate data models –	10 Hours
aggregates – key-value and document data models – relationships – graph databases –	
schema less databases – materialized views – distribution models – shading — version –	
map reduce – partitioning and combining – composing map-reduce calculations.	
Module – 3	
BASICS OF HADOOP: Data format – analyzing data with Hadoop – scaling out –	10 Hours
Hadoop streaming – Hadoop pipes – design of Hadoop distributed file system (HDFS) –	
HDFS concepts – Java interface – data flow – Hadoop I/O – data integrity – compression	
- serialization - Avro - file-based data structures.	
Module-4	
MAPREDUCE APPLICATIONS: MapReduce workflows – unit tests with MRUnit – test	10 Hours
data and local tests – anatomy of MapReduce job run – classic Map-reduce – YARN –	
failures in classic Map-reduce and YARN – job scheduling – shuffle and sort – task	
execution – MapReduce types – input formats – output formats	
Module-5	
HADOOP RELATED TOOLS: Hbase – data model and implementations – Hbase clients	10 Hours
– Hbase examples –praxis. Cassandra – Cassandra data model – Cassandra examples –	
Cassandra clients –Hadoop integration. Pig – Grunt – pig data model – Pig Latin –	
developing and testing Pig Latin scripts. Hive – data types and file formats – HiveQL	
data definition – HiveQL data manipulation – HiveQL queries.	
Course outcomes:	

The students shall able to:

- Describe big data and use cases from selected business domains
- Explain NoSQL big data management
- Install, configure, and run Hadoop and HDFS
- Perform map-reduce analytics using Hadoop

• Use Hadoop related tools such as HBase, Cassandra, Pig, and Hive for big data Analytics

Question paper pattern:

The question paper will have ten questions.

There will be 2 questions from each module.

Each question will have questions covering all the topics under a module.

The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

- 1. Tom White, "Hadoop: The Definitive Guide", Third Edition, O'Reilley, 2012.
- 2. Eric Sammer, "Hadoop Operations", O'Reilley, 2012.

Reference Books:

- 1. Vignesh Prajapati, Big data analytics with R and Hadoop, SPD 2013.
- 2. E. Capriolo, D. Wampler, and J. Rutherglen, "Programming Hive", O'Reilley, 2012.
- 3. Lars George, "HBase: The Definitive Guide", O'Reilley, 2011.
- 4. Alan Gates, "Programming Pig", O'Reilley, 2011

ADVANCES IN COMPUTER NETWORKS [As per Choice Based Credit System (CBCS) scheme] (Effective from the academic year 2016 -2017) SEMESTER - II Subject Code 16SCN12/**16SCS22** IA Marks 20 Number of Lecture Hours/Week 80 Exam Marks 04 Total Number of Lecture Hours 50 Exam Hours 03 CREDITS - 04 **Course objectives:** This course will enable students to Discuss with the basics of Computer Networks. • Compare various Network architectures. Discuss fundamental protocols. • Define and analyze network traffic, congestion, controlling and resource allocation. Teaching Module 1 Hours Foundation: Building a Network, Requirements, Perspectives, Scalable Connectivity, 10 Hours Cost-Effective Resource sharing, Support for Common Services, Manageability, Protocol layering, Performance, Bandwidth and Latency, Delay X Bandwidth Product, Perspectives on Connecting, Classes of Links, Reliable Transmission, Stop-and-Wait, Sliding Window, Concurrent Logical Channels. T1: Chapter 1.1, 1.2, 1.5.1, 1.5.2., 2.1, 2.5 T2: Chapter 4 Module 2 Internetworking I: Switching and Bridging, Datagram's, Virtual Circuit Switching, 10 Hours Source Routing, Bridges and LAN Switches, Basic Internetworking (IP), What is an Internetwork?, Service Model, Global Addresses, Datagram Forwarding in IP, sub netting and classless addressing, Address Translation (ARP), Host Configuration (DHCP), Error Reporting (ICMP), Virtual Networks and Tunnels. **T1:** Chapter 3.1, 3.2, Module 3 **Internetworking- II:** Network as a Graph, Distance Vector (RIP), Link State (OSPF), 10 Hours Metrics, The Global Internet, Routing Areas, Routing among Autonomous systems (BGP), IP Version 6 (IPv6), Mobility and Mobile IP **T1:** Chapter 3.3, 4.1.1,4.1.3 **T2:** Chapter 13.1 to 13.18, Ch 18. Module 4 End-to-End Protocols: Simple Demultiplexer (UDP), Reliable Byte Stream(TCP), End-10 Hours to-End Issues, Segment Format, Connecting Establishment and Termination, Sliding Window Revisited, Triggering Transmission, Adaptive Retransmission, Record Boundaries, TCP Extensions, Queuing Disciplines, FIFO, Fair Queuing, TCP Congestion Control, Additive Increase/ Multiplicative Decrease, Slow Start, Fast Retransmit and Fast Recovery **T1:** Chapter 5.1, 5.2.1 to 5.2.8, 6.2, 6.3 Module 5 Congestion Control and Resource Allocation Congestion-Avoidance Mechanisms, 10 Hours DEC bit, Random Early Detection (RED), Source-Based Congestion Avoidance. The Domain Name System (DNS), Electronic Mail (SMTP, POP, IMAP, MIME), World Wide Web (HTTP), Network Management (SNMP) **T1:** Chapter 6.4 **T2:** Chapter 23.1 to 23.16, Chapter 24, Chapter 25, Chapter 27.1 to 27.8 **Course Outcomes**

The students should be able to:

List and classify network services, protocols and architectures, explain why they are layered.

- Choose key Internet applications and their protocols, and apply to develop their own applications (e.g. Client Server applications, Web Services) using the sockets API.
- Explain develop effective communication mechanisms using techniques like connection establishment, queuing theory, recovery Etc.
- Explain various congestion control techniques.

Question paper pattern:

The question paper will have ten questions.

There will be 2 questions from each module.

Each question will have questions covering all the topics under a module. The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

- 1. Larry Peterson and Bruce S Davis "Computer Networks : A System Approach" 5th Edition , Elsevier -2014.
- 2. Douglas E Comer, "Internetworking with TCP/IP, Principles, Protocols and Architecture" 6th Edition, PHI 2014.

Reference Books:

- 1. Uyless Black, "Computer Networks, Protocols , Standards and Interfaces" 2 nd Edition PHI.
- 2. Behrouz A Forouzan, "TCP/IP Protocol Suite" 4 th Edition Tata McGraw-Hill.

[As per Choice B	ANCED ALGORI' ased Credit Systen m the academic ye SEMESTER – II	n (CBCS) scheme] ear 2016 -2017)	
Subject Code	16SCS23 / 16SSE253	IA Marks	20
Number of Lecture Hours/Week	04	Exam Marks	80
Total Number of Lecture Hours	50	Exam Hours	03
	CREDITS – 04		
 Course objectives: This course will en Define the graph search algorit Explain network flow and linea Interpret hill climbing and dyna Develop recursive backtracking Define NP completeness and ra Module -1 	hms. ar programming pro amic programming g algorithms.	design techniques.	Teaching Hours
Review of Analysis Techniques: Of Standard notations and common function equations - The substitution method, method; Amortized Analysis: Aggregation	ions; Recurrences a The recurrence –	and Solution of Recurrent tree method, The mass	nce
Module -2			
Graph Algorithms: Bellman - Ford ADAG; Johnson's Algorithm for sparse method; Maximum bipartite matching. I polynomials; The DFT and FFT; Efficie	graphs; Flow network graphs; Flow network graphs; Flow network graphs and the graphs and the graphs are graphs.	works and Ford-Fulkers he FFT: Representation	son
Module – 3			1
Number -Theoretic Algorithms: Ele Solving modular linear equations; The element; RSA cryptosystem; Primality	e Chinese remaind	ler theorem; Powers of	
Module-4			
String-Matching Algorithms: Naïve String matching with finite automata; Kalgorithms.		1 0	
Module-5			
Probabilistic and Randomized Algorithms, Monte Carl numeric algorithms.			
Course outcomes:			

Upon completion of the course, the students will be able to

- Design and apply iterative and recursive algorithms.
- Design and implement optimization algorithms in specific applications.
- Design appropriate shared objects and concurrent objects for applications.

Question paper pattern:

The question paper will have ten questions.

There will be 2 questions from each module.

Each question will have questions covering all the topics under a module.

The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

- 1. T. H Cormen, C E Leiserson, R L Rivest and C Stein: Introduction to Algorithms, 3rd Edition, Prentice-Hall of India, 2010.
- 2. Kenneth A. Berman, Jerome L. Paul: Algorithms, Cengage Learning, 2002.

Reference Books:

1. Ellis Horowitz, Sartaj Sahni, S.Rajasekharan: Fundamentals of Computer Algorithms, 2nd Edition, Universities press, 2007

INTERNET OF THINGS [As per Choice Based Credit System (CBCS) scheme] (Effective from the academic year 2016 -2017) SEMESTER – II			
Subject Code	16LNI253 /16SCE253 /16SCN151 /16SCS24 /16SIT251 /16SSE421	IA Marks	20
Number of Lecture Hours/Week	04	Exam Marks	80
Total Number of Lecture Hours	50	Exam Hours	03
CREDITS – 04			

- Define and explain basic issues, policy and challenges in the IoT
- Illustrate Mechanism and Key Technologies in IoT
- Explain the Standard of the IoT
- Explain resources in the IoT and deploy of resources into business
- Demonstrate data analytics for IoT

Module -1	Teaching
	Hours
What is The Internet of Things? Overview and Motivations, Examples of Apllications,	10Hours
IPV6 Role, Areas of Development and Standardization, Scope of the Present	
Investigation.Internet of Things Definitions and frameworks-IoT Definitions, IoT	
Frameworks, Basic Nodal Capabilities. Internet of Things Application Examples-	
Overview, Smart Metering/Advanced Metering Infrastructure-Health/Body Area	
Networks, City Automation, Automotive Applications, Home Automation, Smart Cards,	
Tracking, Over-The-Air-Passive Surveillance/Ring of Steel, Control Application	
Examples, Myriad Other Applications.	
Module -2	

Fundamental IoT Mechanism and Key Technologies-Identification of IoT Object and	10 Hours
Services, Structural Aspects of the IoT, Key IoT Technologies. Evolving IoT Standards-	
Overview and Approaches,IETF IPV6 Routing Protocol for RPL Roll, Constrained	
Application Protocol, Representational State Transfer, ETSI M2M, Third Generation	
Partnership Project Service Requirements for Machine-Type Communications,	
CENELEC, IETF IPv6 Over Lowpower WPAN, Zigbee IP(ZIP),IPSO	1
Module – 3	
Layer ½ Connectivity: Wireless Technologies for the IoT-WPAN Technologies for	10 Hours
IoT/M2M, Cellular and Mobile Network Technologies for IoT/M2M,Layer 3	
Connectivity :IPv6 Technologies for the IoT:Overview and Motivations.Address	
Capabilities, IPv6 Protocol Overview, IPv6 Tunneling, IPsec in IPv6, Header Compression	
Schemes, Quality of Service in IPv6, Migration Strategies to IPv6.	
Module-4	
Case Studies illustrating IoT Design-Introduction, Home Automation, Cities,	10 Hours
Environment, Agriculture, Productivity Applications.	
Module-5	
Data Analytics for IoT – Introduction, Apache Hadoop, Using Hadoop MapReduce for	10
Batch Data Analysis, Apache Oozie, Apache Spark, Apache Storm, Using Apache Storm	Hours
for Real-time Data Analysis, Structural Health Monitoring Case Study.	
Course outcomes.	

Course outcomes:

At the end of this course the students will be able to:

- Develop schemes for the applications of IOT in real time scenarios
- Manage the Internet resources
- Model the Internet of things to business
- Understand the practical knowledge through different case studies
- Understand data sets received through IoT devices and tools used for analysis

Question paper pattern:

The question paper will have ten questions.

There will be 2 questions from each module.

Each question will have questions covering all the topics under a module.

The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

- 1. Daniel Minoli, "Building the Internet of Things with IPv6 and MIPv6: The Evolving World of M2M Communications", Wiley, 2013.
- 2. Arshdeep Bahga, Vijay Madisetti, "Internet of Things: A Hands on Approach" Universities Press., 2015

Reference Books:

- 1. Michael Miller," The Internet of Things", First Edition, Pearson, 2015.
- 2. Claire Rowland, Elizabeth Goodman et.al.," Designing Connected Products", First Edition, O'Reilly, 2015.

ARTIFICIAL INTELLIGENCE AND AGENT TECHNOLOGY [As per Choice Based Credit System (CBCS) scheme] (Effective from the academic year 2016 -2017) **SEMESTER - II** Subject Code 16SCS251 IA Marks 20 Number of Lecture Hours/Week 03 Exam Marks 80 Total Number of Lecture Hours 40 **Exam Hours** 03 **CREDITS - 03** Course objectives: This course will enable students to

- Apply a given AI technique to a given concrete problem
- Implement non-trivial AI techniques in a relatively large system
- Explain uncertainty and Problem solving techniques.
- Illustrate various symbolic knowledge representation to specify domains and reasoning tasks of a situated software agent.
- Contrast different logical systems for inference over formal domain representations, and trace how a particular inference algorithm works on a given problem specification.
- Compare various learning techniques and agent technology.

Module -1	Teaching Hours
What is Artificial Intelligence: The AI Problems, The Underlying assumption, What is an	8 Hours
AI Technique?, The Level of the model, Criteria for success, some general references,	o mours
One final word and beyond. Problems, problem spaces, and search: Defining, the problem	
as a state space search, Production systems, Problem characteristics, Production system	
characteristics, Issues in the design of search programs, Additional Problems. Intelligent	
Agents: Agents and Environments, The nature of environments, The structure of agents.	
Text Book 1: Chapter 1 & 2 Text Book 2: Chapter 2	
Module -2	
	0 11
Heuristic search techniques: Generate-and-test, Hill climbing, Best-first search, Problem	8 Hours
reduction, Constraint satisfaction, Mean-ends analysis. Knowledge representation issues:	
Representations and mappings, Approaches to knowledge representation, Issues in	
knowledge representation, The frame problem. Using predicate logic: Representing	
simple facts in logic, representing instance and ISA relationships, Computable functions	
and predicates, Resolution, Natural Deduction. Logical Agents: Knowledge -based	
agents, the Wumpus world, Logic-Propositional logic, Propositional theorem proving,	
Effective propositional model checking, Agents based on propositional logic.	
Text Book 1: Chapter 3, 4 & 5 Text Book 2: Chapter 6	
Module – 3	T
Symbolic Reasoning Under Uncertainty: Introduction to nonmonotonic reasoning, Logic	8 Hours
for nonmonotonic reasoning, Implementation Issues, Augmenting a problem-solver,	
Implementation: Depth-first search, Implementation: Breadth-first search. Statistical	
Reasoning: Probability and bayes Theorem, Certainty factors and rule-based systems,	
Bayesian Networks, Dempster-Shafer Theory, Fuzzy logic.	
Quantifying Uncertainty: Acting under uncertainty, Basic probability notation, Inference	
using full joint distributions, Independence, Bayes' rule and its use, The Wumpus world	
revisited. Text Book 1: Chapter 7 & 8 Text Book 2: Chapter 13	
Module-4	
Weak Slot-and-filter structures: Semantic Nets, Frames. Strong slot-and –filler structures:	8 Hours
Conceptual dependency, scripts, CYC. Adversarial Search: Games, Optimal Decision in	
Games, Alpha-Beta Pruning, Imperfect Real-Time Decisions, Stochastic Games, Partially	
Observable Games, State-Of-The-Art Game Programs, Alternative Approaches,	
Summary. Text Book 1: Chapter 9 & 10Text Book 2: Chapter 5	
Module-5	
Learning From examples: Forms of learning, Supervised learning, Learning decision	8 Hours
trees, Evaluating and choosing the best hypothesis, The theory of learning ,PAC,	
Regression and Classification with linear models, Nonparametric models, Support vector	
machines, Ensemble learning. Learning Probabilistic Models: Statistical learning,	
learning with complete data, learning with hidden variables: The EM algorithm. Text	
Book 2: Chapter 18 & 20	

Course outcomes:

The students are able to:

• Design intelligent agents for problem solving, reasoning, planning, decision making, and learning, specific design and performance constraints, and when needed, design variants of

existing algorithms.

- Apply AI technique on current applications.
- Problem solving, knowledge representation, reasoning, and learning.

Question paper pattern:

The question paper will have ten questions.

There will be 2 questions from each module.

Each question will have questions covering all the topics under a module.

The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

- 1. Elaine Rich, Kevin Knight, Shivashanka B Nair: Artificial Intelligence, Tata CGraw Hill 3rd edition. 2013
- 2. Stuart Russel, Peter Norvig: Artificial Intelligence A Modern Approach, Pearson 3rd edition

Reference Books:

1. Nils J. Nilsson: "Principles of Artificial Intelligence", Elsevier, ISBN-13: 9780934613101

PATTERN RECOGNITION [As per Choice Based Credit System (CBCS) scheme] (Effective from the academic year 2016 -2017) SEMESTER - II				
Subject Code	16SCE252/ 16SCS252	IA Marks	20	
Number of Lecture Hours/Week	03	Exam Marks	80	
Total Number of Lecture Hours 40 Exam Hours 03				
CREDITS – 03				

- Explain various Image processing and Pattern recognition techniques.
- Illustrate mathematical morphology necessary for Pattern recognition.
- Demonstrate Image Representation and description and feature extraction.

 Explain principles of decision trees and clustering in pattern recognition. 	
Module -1	Teaching
	Hours
Introduction: Definition of PR, Applications, Datasets for PR, Different paradigms for	8 Hours
PR, Introduction to probability, events, random variables, Joint distributions and	
densities, moments. Estimation minimum risk estimators, problems	
Module -2	
Representation: Data structures for PR, Representation of clusters, proximity measures,	8 Hours
size of patterns, Abstraction of Data set, Feature extraction, Feature selection, Evaluation	
Module – 3	
Nearest Neighbor based classifiers & Bayes classifier: Nearest neighbor algorithm, variants of NN algorithms, use of NN for transaction databases, efficient algorithms, Data reduction, prototype selection, Bayes theorem, minimum error rate classifier, estimation of probabilities, estimation of probabilities, comparison with NNC, Naive bayes classifier, Bayessian belief network	
Module-4	
Naive bayes classifier, Bayessian belief network, Decision Trees: Introduction, DT for PR, Construction of DT, Splitting at the nodes, Over fitting & Pruning, Examples, Hidden Markov models: Markov models for classification, Hidden Markov models and classification using HMM	8 Hours
Module-5	
Clustering: Hierarchical (Agglomerative, single/complete/average linkage, wards,	8 Hours

Partitional (Forgy's, k-means, Isodata), clustering large data sets, examples, An application: Handwritten Digit recognition

Course outcomes:

The students shall able to:

- Explain pattern recognition principals
- Develop algorithms for Pattern Recognition.
- Develop and analyze decision tress.
- Design the nearest neighbor classifier.
- Apply Decision tree and clustering techniques to various applications

Question paper pattern:

The question paper will have ten questions.

There will be 2 questions from each module.

Each question will have questions covering all the topics under a module.

The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

- 1. Pattern Recognition (An Introduction), V Susheela Devi, M Narsimha Murthy, 2011 Universities Press, ISBN 978-81-7371-725-3
- 2. Pattern Recognition & Image Analysis, Earl Gose, Richard Johnsonbaugh, Steve Jost. PH ISBN-81-203-1484-0, 1996.

Reference Books:

1. Duda R. O., P.E. Hart, D.G. Stork., Pattern Classification, John Wiley and sons, 2000.

	ATION AND NETWORK SECU		
_ _	ice Based Credit System (CBCS)	_	
(Effective	e from the academic year 2016 -2	2017)	
	SEMESTER – II	[T	
Subject Code	16LNI12/16SCN13/ 16SCS253	IA Marks	20
Number of Lecture Hours/Week	03	Exam Marks	80
Total Number of Lecture Hours	40	Exam Hours	03
	CREDITS – 03		
Course objectives: This course will			
<u> </u>	ed to provide confidentiality, integr	ity and authenticity.	
 Distinguish key distribution and 			
	secure data in transit across data		
	in the field of Information technol	ogy	
Module 1 Classical Encryption Technique	ues Symmetric Cipher Mod		Teachin Hours 8 Hours
Cryptanalysis and Brute-Force Atta alphabetic Cipher, Playfair Cipher, Block Ciphers and the data encry stream Ciphers and block Ciphers, Cipher, The data encryption standar results, the avalanche effect, the stre DES algorithm, timing attacks, Bloc of function F, key schedule algorithm	Hill Cipher, Poly alphabetic Cipher syption standard: Traditional block Motivation for the feistel Cipher stand, DES encryption, DES decryption ength of DES, the use of 56-Bit Keck cipher design principles, number	ner, One Time Pad. ek Cipher structure, structure, the feistel in, A DES example, ys, the nature of the	
Module 2			
Public-Key Cryptography and R key cryptosystems. Applications fo key cryptosystems. Public-key cry algorithm, computational aspect Cryptosystems: Diffie-hellman key man in the middle attack, Elgama abelian groups, elliptic curves over overGF(2m), Elliptic curve cryptographic curve encryption/ decry Pseudorandom number generation b	or public-key cryptosystems, requireptanalysis. The RSA algorithm, is, the security of RSA. On the security of RSA. On the security of RSA, or the security of RSA. On the security of RSA, or the security of RSA, or the security of RSA, or the security of RSA. On the security of RSA, or the security of RSA, or the security of RSA, or the security of RSA. On the security of RSA, or the security of RSA, or the security of RSA, or the security of RSA. On the security of RSA, or the security of RSA, or the security of RSA, or the security of RSA. On the security of RSA, or the sec	rements for public- description of the Other Public-Key exchange protocols, c curve arithmetic, r Zp, elliptic curves nan key exchange, urve cryptography,	8 Hours
Module 3 Key Management and Distribut			

Wireless network security: Wireless security, Wireless network threats, Wireless 8 Hours

network measures, mobile device security, security threats, mobile device security strategy, IEEE 802.11 Wireless LAN overview, the Wi-Fi alliance, IEEE 802 protocol architecture. Security, IEEE 802.11i services, IEEE 802.11i phases of operation, discovery phase, Authentication phase, key management phase, protected data transfer phase, the IEEE 802.11i pseudorandom function. Web Security Considerations: Web Security Threats, Web Traffic Security Approaches. Secure Sockets Layer: SSL Architecture, SSL Record Protocol, Change Cipher Spec Protocol, Alert Protocol, and shake Protocol, Cryptographic Computations. Transport Layer Security: Version Number, Message Authentication Code, Pseudorandom Functions, Alert Codes, Cipher Suites, Client Certificate Types, Certificate Verify and Finished Messages, Cryptographic Computations, and Padding. HTTPS Connection Initiation, Connection Closure. Secure Shell(SSH) Transport Layer Protocol, User Authentication Protocol, Connection Protocol

Module 5

Electronic Mail Security: Pretty good privacy, notation, operational; description, S/MIME, RFC5322, Multipurpose internet mail extensions, S/MIME functionality, S/MIME messages, S/MIME certificate processing, enhanced security services, Domain keys identified mail, internet mail architecture, E-Mail threats, DKIM strategy, DKIM functional flow. IP Security: IP Security overview, applications of IPsec, benefits of IPsec, Routing applications, IPsec documents, IPsec services, transport and tunnel modes, IP Security policy, Security associations, Security associations database, Security policy database, IP traffic processing, Encapsulating Security payload, ESP format, encryption and authentication algorithms, Padding, Anti replay service, transport and tunnel modes, combining security associations, authentication plus confidentiality, basic combinations of security associations, internet key exchange, key determinations protocol, header and payload formats, cryptographic suits.

Course Outcomes

The students should be able to:

• Analyze the vulnerabilities in any computing system and hence be able to design a security solution

8 Hours

- Identify the security issues in the network and resolve it.
- Evaluate security mechanisms using rigorous approaches, including theoretical.

Question paper pattern:

The question paper will have ten questions.

There will be 2 questions from each module.

Each question will have questions covering all the topics under a module. The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

1. William Stallings, Cryptography and Network Security, Pearson 6th edition.

Reference Books:

1. V K Pachghare: Cryptography and Information Security.

WEB SERVICES [As per Choice Based Credit System (CBCS) scheme] (Effective from the academic year 2016 -2017) SEMESTER – II			
Subject Code	16SCS254 / 16SSE154 / 16LNI252 / 16SIT21	IA Marks	20
Number of Lecture Hours/Week	03	Exam Marks	80
Total Number of Lecture Hours	40	Exam Hours	03
CREDITS – 04			
Course objectives: This course will enable students to			

- Define and explain Web Services.
- Summarize WSDL Web Services.
- Analyze Web service Architecture.
- Explain Building Blocks of Web services.

Module 1	Teaching
	Hours
Middleware: Understanding the middle ware, RPC and Related Middle ware, TP	8 Hours
Monitors, Object Brokers, Message-Oriented Middleware.	
Module 2	
Web Services: Web Services Technologies, Web Services Architecture.	8 Hours
Module 3	
Basic Web Services Technology: WSDL Web Services Description Language, UDDI	8 Hours
Universal Description Discovery and Integration, Web Services at work interactions	
between the Specifications, Related Standards.	
Module 4	
Service Coordination Protocols: Infrastructure for Coordination Protocols, WS-	8 Hours
Coordination, WS-Transaction, Rosetta Net and Other Standards Related to	
Coordination Protocols.	
Module 5	
Service Composition: Basic of Service Composition, A New Chance of Success for	8 Hours
Composition, Services Composition Models, Dependencies between Coordination and	
Composition, BPEL: Business Process Execution Language for Web Services, Outlook,	
Applicability of the Web Services, Web services as a Problem and a Solution : AN	
Example.	
Course Outcomes	_

Course Outcomes

The students should be able to:

- Bind and unbind services in UDDI.
- Develop WSDL document
- Implement web service client to call public service.
- Implement a service and exposing it as public service.

Question paper pattern:

The question paper will have ten questions.

There will be 2 questions from each module.

Each question will have questions covering all the topics under a module. The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

1. Gustavo Alonso, Fabio Casati, Harumi Kuno, Vijay Machiraju: Web Services(Concepts ,Architectures and Applications), Springer International Edition 2009.

Reference Books:

NIL

_	MINIPROJECT per Choice Based Credit System (CBCS) sche (Effective from the academic year 2016 -2017) SEMESTER – II	_	
Laboratory Code	16LNI26/ 16SCE26 / 16SCN26 / 16SCS26 /16SFC26 / 16SIT26 /	IA Marks	20
	16SSE26		

Number of Lecture Hours/Week	03 hours of lab	Exam	80
		Marks	
Total Number of Lecture Hours		Exam	03
		Hours	

CREDITS - 02

Course objectives: This course will enable students to

• Enable the student to design, develop and analyze an application development

The student will carry out a mini project relevant to the course. The project must be development of an application (Hardware/Software). It is preferable if the project is based on mobile application development.

Course outcomes:

- Design, develop and to analyze an application development.
- Prepare report of the project.

Conduction of Practical Examination:

The student shall prepare the report by including:

- 1. Define project (Problem Definition)
- 2. Prepare requirements document
 - a. Statement of work
 - b. Functional requirements
 - c. Software / Hardware requirements
- 3. Develop use cases
- 4. Research, analyze and evaluate existing learning materials on the application
- 5. Develop user interface and implement code
- 6. Prepare for final demo

Evaluation:

Evaluation shall be taken up at the end of the semester. Project work evaluation and viva-voce examination shall be conducted. Internal evaluation shall be carried by the Guide and Head of the department for 20 marks. Final examination which includes demonstration of the project and viva-voce shall be conducted for 80 Marks viz report + Outputs of the project + presentation = 30+30+20=80 marks.

SEMINAR [As per Choice Based Credit System (CBCS) scheme] (Effective from the academic year 2016 -2017) SEMESTER – II			
Subject Code	16SCE27 / 16SCN27 / 16LNI27 / 16SIT27 / 16SSE27 / 16SCS27 / 16SFC27	IA Marks	100
Number of Lecture Hours/Week		Exam Marks	-
Total Number of Lecture Hours		Exam Hours	-
	CREDITS - 01		

Course objectives: This course will enable students to

- Motivate the students to read technical article
- Discover recent technology developments

Descriptions

The students should read a recent technical article (try to narrow down the topic as much as possible)

from any of the leading reputed and refereed journals like:

- 1. IEEE Transactions, journals, magazines, etc.
- 2. ACM Transactions, journals, magazines, SIG series, etc.
- 3. Springer
- 4. Elsevier publications etc

In the area of (to name few and not limited to)

- Web Technology
- Cloud Computing
- Artificial Intelligent
- Networking
- Security
- Data mining

Course Outcomes

The students should be able to:

- Conduct survey on recent technologies
- Infer and interpret the information from the survey conducted
- Motivated towards research

Conduction:

The students have to present at least ONE technical seminar on the selected topic and submit a report for internal evaluation.

Marks Distribution: Literature Survey + Presentation (PPT) + Report + Question & Answer + Paper: 20 + 30 + 30 + 20 (100).

MACHINE LEARNING TECHNIQUES [As per Choice Based Credit System (CBCS) scheme] (Effective from the academic year 2016 -2017) SEMESTER - IV			
Subject Code	16SCS41 /16SIT424	IA Marks	20
Number of Lecture Hours/Week	04	Exam Marks	80
Total Number of Lecture Hours	50	Exam Hours	03
CREDITS = 04			

- Explain basic concepts of learning and decision trees.
- Compare and contrast neural networks and genetic algorithms
- Apply the Bayesian techniques and instant based learning
- Examine analytical learning and reinforced learning

Module -1	Teaching
	Hours
INTRODUCTION, CONCEPT LEARNING AND DECISION TREES	10Hours
Learning Problems – Designing Learning systems, Perspectives and Issues – Concept	
Learning – Version Spaces and Candidate Elimination Algorithm – Inductive bias –	
Decision Tree learning – Representation – Algorithm – Heuristic Space Search	
Module -2	
NEURAL NETWORKS AND GENETIC ALGORITHMS: Neural Network	10 Hours
Representation – Problems – Perceptrons – Multilayer Networks and Back Propagation	
Algorithms - Advanced Topics - Genetic Algorithms - Hypothesis Space Search -	
Genetic Programming – Models of Evolution and Learning.	
Module – 3	
BAYESIAN AND COMPUTATIONAL LEARNINGL Bayes Theorem - Concept	10 Hours
Learning - Maximum Likelihood - Minimum Description Length Principle - Bayes	

Optimal Classifier - Gibbs Algorithm - Naïve Bayes Classifier - Bayesian Belief	
Network – EM Algorithm – Probably Learning – Sample Complexity for Finite and	
Infinite Hypothesis Spaces – Mistake Bound Model.	
Module-4	
INSTANT BASED LEARNING AND LEARNING SET OF RULES: K- Nearest	10 Hours
Neighbor Learning - Locally Weighted Regression - Radial Basis Functions - Case-	
Based Reasoning – Sequential Covering Algorithms – Learning Rule Sets – Learning	
First Order Rules – Learning Sets of First Order Rules – Induction as Inverted Deduction	
– Inverting Resolution	
Module-5	
ANALYTICAL LEARNING AND REINFORCED LEARNING: Perfect Domain	10
Theories – Explanation Based Learning – Inductive-Analytical Approaches - FOCL	Hours
Algorithm - Reinforcement Learning - Task - Q-Learning - Temporal Difference	
Learning	

Course outcomes:

On Completion of the course, the students will be able to

- Choose the learning techniques with this basic knowledge.
- Apply effectively neural networks and genetic algorithms for appropriate applications.
- Apply bayesian techniques and derive effectively learning rules.
- Choose and differentiate reinforcement and analytical learning techniques

Question paper pattern:

The question paper will have ten questions.

There will be 2 questions from each module.

Each question will have questions covering all the topics under a module.

The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

1. Tom M. Mitchell, "Machine Learning", McGraw-Hill Education (INDIAN EDITION), 2013.

Reference Books:

- 1. Ethem Alpaydin, "Introduction to Machine Learning", 2nd Ed., PHI Learning Pvt. Ltd., 2013.
- 2. T. Hastie, R. Tibshirani, J. H. Friedman, "The Elements of Statistical Learning", Springer; 1st edition, 2001.

Computer Vision [As per Choice Based Credit System (CBCS) scheme] (Effective from the academic year 2016 -2017) SEMESTER - IV			
Subject Code	16SCS421	IA Marks	20
Number of Lecture Hours/Week	03	Exam Marks	80
Total Number of Lecture Hours	40	Exam Hours	03

CREDITS – 03

- Review image processing techniques for computer vision
- Discuss shape and region analysis
- Analyze Hough Transform and its applications to detect lines, circles, ellipses
- Analyze three-dimensional image analysis techniques
- Illustrate motion analysis
- Discuss some applications of computer vision algorithms

Module -1	Teaching
	Hours
CAMERAS: Pinhole Cameras, Radiometry - Measuring Light: Light in Space, Light	8 Hours
Surfaces, Important Special Cases, Sources, Shadows, And Shading: Qualitative	
Radiometry, Sources and Their Effects, Local Shading Models, Application: Photometric	
Stereo, Interreflections: Global Shading Models, Color: The Physics of Color, Human	
Color Perception, Representing Color, A Model for Image Color, Surface Color from	
Image Color.	
Module -2	
Linear Filters: Linear Filters and Convolution, Shift Invariant Linear Systems, Spatial	8 Hours
Frequency and Fourier Transforms, Sampling and Aliasing, Filters as Templates, Edge	
Detection: Noise, Estimating Derivatives, Detecting Edges, Texture: Representing	
Texture, Analysis (and Synthesis) Using Oriented Pyramids, Application: Synthesis by	
Sampling Local Models, Shape from Texture.	
Module – 3	
The Geometry of Multiple Views: Two Views, Stereopsis: Reconstruction, Human	8 Hours
Stereposis, Binocular Fusion, Using More Cameras, Segmentation by Clustering: What Is	
Segmentation?, Human Vision: Grouping and Getstalt, Applications: Shot Boundary	
Detection and Background Subtraction, Image Segmentation by Clustering Pixels,	
Segmentation by Graph-Theoretic Clustering,	
Module-4	
Segmentation by Fitting a Model: The Hough Transform, Fitting Lines, Fitting Curves,	8 Hours
Fitting as a Probabilistic Inference Problem, Robustness, Segmentation and Fitting Using	
Probabilistic Methods: Missing Data Problems, Fitting, and Segmentation, The EM	
Algorithm in Practice, Tracking With Linear Dynamic Models: Tracking as an Abstract	
Inference Problem, Linear Dynamic Models, Kalman Filtering, Data Association,	
Applications and Examples.	
Module-5	
Geometric Camera Models: Elements of Analytical Euclidean Geometry, Camera	8 Hours
Parameters and the Perspective Projection, Affine Cameras and Affine Projection	
Equations, Geometric Camera Calibration: Least-Squares Parameter Estimation, A Linear	
Approach to Camera Calibration, Taking Radial Distortion into Account, Analytical	
Photogrammetry, An Application: Mobile Robot Localization, Model- Based Vision:	
Initial Assumptions, Obtaining Hypotheses by Pose Consistency, Obtaining Hypotheses	
by pose Clustering, Obtaining Hypotheses Using Invariants, Verification, Application:	
Registration In Medical Imaging Systems, Curved Surfaces and Alignment.	
Course outcomes:	

Course outcomes:

Upon completion of the course, the students will be able to

- Implement fundamental image processing techniques required for computer vision
- Perform shape analysis
- Implement boundary tracking techniques
- Apply chain codes and other region descriptors
- Apply Hough Transform for line, circle, and ellipse detections.
- Apply 3D vision techniques.
- Implement motion related techniques.
- Develop applications using computer vision techniques.

Question paper pattern:

The question paper will have ten questions.

There will be 2 questions from each module.

Each question will have questions covering all the topics under a module.

The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

1. David A. Forsyth and Jean Ponce: Computer Vision – A Modern Approach, PHI Learning

(Indian Edition), 2009.

Reference Books:

1. E. R. Davies: Computer and Machine Vision – Theory, Algorithms and Practicalities, Elsevier (Academic Press), 4th edition, 2013.

BUSINESS INTELLIGENCE AND ITS APPLICATIONS [As per Choice Based Credit System (CBCS) scheme] (Effective from the academic year 2016 -2017) SEMESTER - IV			
Subject Code	16SIT421 / 16SCS422	IA Marks	20
Number of Lecture Hours/Week	03	Exam Marks	80
Total Number of Lecture Hours	40	Exam Hours	03

CREDITS - 03

Course objectives: This course will enable students to

- Evaluate the key elements of a successful business intelligence (BI) program
- Apply a BI meta model that turns outcomes into actions
- Extract and transform data from an operational data to a data business data
- Evaluate business analytics and performance measurement tools

Evaluate business analytics and performance measurement tools	
Module -1	Teaching
	Hours
Development Steps, BI Definitions, BI Decision Support Initiatives, Development	8 Hours
Approaches, Parallel Development Tracks, BI Project Team Structure, Business	
Justification, Business Divers, Business Analysis Issues, Cost – Benefit Analysis, Risk	
Assessment, Business Case Assessment Activities, Roles Involved In These Activities,	
Risks Of Not Performing Step, Hardware, Middleware, DBMS Platform, Non Technical	
Infrastructure Evaluation	
Module -2	
Managing The BI Project, Defining And Planning The BI Project, Project Planning	8 Hours
Activities, Roles And Risks Involved In These Activities, General Business Requirement,	
Project Specific Requirements, Interviewing Process	
Module – 3	
Differences in Database Design Philosophies, Logical Database Design, Physical	8 Hours
Database Design, Activities, Roles And Risks Involved In These Activities, Incremental	
Rollout, Security Management, Database Backup And Recovery	
Module-4	
Growth Management, Application Release Concept, Post Implementation Reviews,	8 Hours
Release Evaluation Activities, The Information Asset and Data Valuation, Actionable	
Knowledge – ROI, BI Applications, The Intelligence Dashboard	
Module-5	
Business View of Information technology Applications: Business Enterprise excellence,	8 Hours
Key purpose of using IT, Type of digital data, basics f enterprise reporting, BI road	
ahead.	
Course outcomes:	

Upon completion of the course, the students will be able to

- Explain the complete life cycle of BI/Analytical development
- Illustrate technology and processes associated with Business Intelligence framework
- Demonstrate a business scenario, identify the metrics, indicators and make recommendations to achieve the business goal.

Question paper pattern:

The question paper will have ten questions.

There will be 2 questions from each module.

Each question will have questions covering all the topics under a module.

The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

- 1. Larissa T Moss and ShakuAtre Business Intelligence Roadmap: The Complete Project Lifecycle for Decision Support Applications, Addison Wesley Information Technology Series, 2003.
- 2. R N Prasad, SeemaAcharya Fundamentals of Business Analytics, Wiley India, 2011.

Reference Books:

- 1. David Loshin Business Intelligence: The Savvy Manager's Guide, Publisher: Morgan Kaufmann, ISBN 1-55860-196-4.
- 2. Brian Larson Delivering Business Intelligence with Microsoft SQL Server 2005, McGraw Hill, 2006.
- 3. Lynn Langit Foundations of SQL Server 2008 Business Intelligence –Apress, ISBN13: 978-1-4302-3324-4, 2011

AGILE TECHNOLOGIES [As per Choice Based Credit System (CBCS) scheme] (Effective from the academic year 2016 -2017) SEMESTER – IV			
Subject Code	16SCS423 /16SSE423	IA Marks	20
Number of Lecture Hours/Week	03	Exam Marks	80
Total Number of Lecture Hours	40	Exam Hours	03

CREDITS - 03

- Explain iterative, incremental development process leads to faster delivery of more useful software
- Evaluate essence of agile development methods
- Illustrate the principles and practices of extreme programming
- Show the roles of prototyping in the software process
- Explain the Mastering Agility

Module -1	Teaching Hours
Why Agile?: Understanding Success, Beyond Deadlines, The Importance of	8 Hours
Organizational Success, Enter Agility, How to Be Agile?: Agile Methods, Don't Make	
Your Own Method, The Road to Mastery, Find a Mentor	
Module -2	
Understanding XP: The XP Lifecycle, The XP Team, XP Concepts, Adopting XP: Is	8 Hours
XP Right for Us?, Go!, Assess Your Agility	
Module – 3	

Practicing XP: Thinking: Pair Programming, Energized Work, Informative Workspace,	8 Hours
Root-Cause Analysis, Retrospectives, Collaborating: Trust, Sit Together, Real Customer	
Involvement, Ubiquitous Language, Stand-Up Meetings, Coding Standards, Iteration	
Demo, Reporting, Releasing: "Done Done", No Bugs, Version Control, Ten-Minute	
Build, Continuous Integration, Collective Code Ownership, Documentation. Planning:	
Vision, Release Planning, The Planning Game, Risk Management, Iteration Planning,	
Slack, Stories, Estimating. Developing: Incremental requirements, Customer Tests, Test-	
Driven Development, Refactoring, Simple Design ,Incremental Design and Architecture,	
Spike Solutions, Performance Optimization, Exploratory Testing	
Module-4	

Mastering Agility: Values and Principles: Commonalities, About Values, Principles, and Practices, Further Reading, Improve the Process: Understand Your Project, Tune and Adapt, Break the Rules, Rely on People: Build Effective Relationships, Let the Right People Do the Right Things, Build the Process for the People, Eliminate Waste: Work in Small, Reversible Steps, Fail Fast, Maximize Work Not Done, Pursue Throughput

8 Hours

Module-5

Deliver Value: Exploit Your Agility, Only Releasable Code Has Value, Deliver Business Results, Deliver Frequently, **Seek Technical Excellence**: Software Doesn't Exist, Design Is for Understanding, Design Trade-offs, Quality with a Name, Great Design, Universal Design Principles, Principles in Practice, Pursue Mastery

8 Hours

Course outcomes:

Students should be able to

- Define XP Lifecycle, XP Concepts, Adopting XP
- Evaluate on Pair Programming, Root-Cause Analysis, Retrospectives, Planning, Incremental Requirements, Customer Tests
- Demonstrate concepts to Eliminate Waste

Question paper pattern:

The question paper will have ten questions.

There will be 2 questions from each module.

Each question will have questions covering all the topics under a module.

The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

1. **The Art of Agile Development** (Pragmatic guide to agile software development), James shore, Chromatic, O'Reilly Media, Shroff Publishers & Distributors, 2007

Reference Books:

- 1. Agile Software Development, Principles, Patterns, and Practices, Robert C. Martin, Prentice Hall; 1st edition, 2002
- 2. Agile and Iterative Development A Manger's Guide", Craig Larman Pearson Education, First Edition, India, 2004

WIRELESS NETWORKS AND MOBILE COMPUTING [As per Choice Based Credit System (CBCS) scheme] (Effective from the academic year 2016 -2017) SEMESTER – IV Subject Code 16SCE22 / 16SCS424 IA Marks 20

Number of Lecture Hours/Week	03	Exam Marks	80	
Total Number of Lecture Hours	40	Exam Hours	03	
CREDITS _ 03				

CREDITS – 03

Course objectives: This course will enable students to

- Define concepts of wireless communication.
- Compare and contrast propagation methods, Channel models, capacity calculations multiple antennas and multiple user techniques used in the mobile communication.
- Explain CDMA, GSM. Mobile IP, WImax and Different Mobile OS
- Illustrate various Markup Languages CDC, CLDC, MIDP; Programming for CLDC, MIDlet model and security concerns

Module -1	Teaching
	Hours
Mobile Computing Architecture: Architecture for Mobile Computing, 3-tier Architecture,	8 Hours
Design Considerations for Mobile Computing. Wireless Networks: Global Systems for	
Mobile Communication (GSM and Short Service Messages (SMS): GSM Architecture,	
Entities, Call routing in GSM, PLMN Interface, GSM Addresses and Identities, Network	
Aspects in GSM, Mobility Management, GSM Frequency allocation. Introduction to	
SMS, SMS Architecture, SM MT, SM MO, SMS as Information bearer, applications,	
GPRS and Packet Data Network, GPRS Network Architecture, GPRS Network	
Operations, Data Services in GPRS, Applications for GPRS, Billing and Charging in	
GPRS, Spread Spectrum technology, IS-95, CDMA versus GSM, Wireless Data, Third	
Generation Networks, Applications on 3G, Introduction to WiMAX.	
Module -2	
Mobile Client: Moving beyond desktop, Mobile handset overview, Mobile phones and	8 Hours
their features, PDA, Design Constraints in applications for handheld devices. Mobile IP:	
Introduction, discovery, Registration, Tunneling, Cellular IP, Mobile IP with IPv6	
Module – 3	
Mobile OS and Computing Environment : Smart Client Architecture, The Client: User	8 Hours
Interface, Data Storage, Performance, Data Synchronization, Messaging. The Server:	
Data Synchronization, Enterprise Data Source, Messaging. Mobile Operating Systems:	
WinCE, Palm OS, Symbian OS, Linux, Proprietary OS Client Development: The	
development process, Need analysis phase, Design phase, Implementation and Testing	
phase, Deployment phase, Development Tools, Device Emulators	
Module-4	
Building, Mobile Internet Applications: Thin client: Architecture, the client, Middleware,	8 Hours
messaging Servers, Processing a Wireless request, Wireless Applications Protocol (WAP)	
Overview, Wireless Languages: Markup Languages, HDML, WML, HTML, cHTML,	
XHTML, VoiceXML.	
Module-5	
J2ME: Introduction, CDC, CLDC, MIDP; Programming for CLDC, MIDlet model,	8 Hours
Provisioning, MIDlet life-cycle, Creating new application, MIDlet event handling, GUI in	
MIDP, Low level GUI Components, Multimedia APIs; Communication in MIDP,	
Security Considerations in MIDP.	
Course outcomes:	

Course outcomes:

The students shall able to:

- Explain state of art techniques in wireless communication.
- Discover CDMA, GSM. Mobile IP, WImax
- Demonstrate program for CLDC, MIDP let model and security concerns

Question paper pattern:

The question paper will have ten questions.

There will be 2 questions from each module.

Each question will have questions covering all the topics under a module.

The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

- 1. Ashok Talukder, Roopa Yavagal, Hasan Ahmed: Mobile Computing, Technology, Applications and Service Creation, 2nd Edition, Tata McGraw Hill, 2010.
- 2. Martyn Mallik: Mobile and Wireless Design Essentials, Wiley India, 2003

Reference Books:

- 1. Raj kamal: Mobile Computing, Oxford University Press, 2007.
- 2. Iti Saha Misra: Wireless Communications and Networks, 3G and Beyond, Tata McGraw Hill, 2009.