

SCHEME & SYLLABUS I/II SEMESTER MCA PROGRAM

2023 Scheme (W.E.F 2023 Admission Students)

Vision

"To attain perfection in providing Globally Competitive Quality Education to all our Students and also benefit the global community by using our strength in Research and Development"

Mission

"To establish world class educational institutions in their respective domains, which shall be **Centers of Excellence** in their stated and implied sense. To achieve this objective we dedicate ourselves to meet the challenges of becoming **Visionary and Realistic, Sensitive and Demanding, Innovative andPractical, Theoretical** and **Pragmatic**; ALL at the same time"

(A Unit of Rajalaxmi Education Trust[®], Mangalore) Autonomous Institute affiliated to VTU, Belagavi, Approved by AICTE, New Delhi Accredited by NAAC with A+ Grade & ISO 9001:2015 Certified Institution

INDEX

I/II SEMESTER						
Sl No	Course Code	Course Title				
	PROFESSIONAL CORE (PC)					
1	23MCPC511	Mathematical Foundation for Computer Applications				
2	23MCPC512	Data Structures				
3	23MCPC513	Database Management Systems				
4	23MCPC514	Web Technologies				
5	23MCPC515	Design and Analysis of Algorithms				
6	6 23MCPC516 Software Engineering					
7	7 23MCPC521 Operating System with LINUX Programming					
8	8 23MCPC522 Object-Oriented Programming with Java					
9	9 23MCPC523 Computer Networks					
10	23MCPC524	Non-Relational Databases				
	PROF	ESSIONAL ELECTIVE (PE)				
11	23MCPE5261	Agile Software Development				
12	23MCPE5262	Principles of Management and Organisational Behavior				
13	23MCPE5263	Cryptography and Network Security				
14	23MCPE5264	Computer Graphics with OpenGL				
	HUMANITIES (HM)					
15	23MCHM525	Research Methodology & IPR				
	SKILL ENHANCEMENT (SE)					
16	23MCSE527	Mini-Project				
		AUDIT COURSE (AU)				
17	23MCAU517	Basics of Computer Programming				

(A Unit of Rajalaxmi Education Trust[®], Mangalore) Autonomous Institute affiliated to VTU, Belagavi, Approved by AICTE, New Delhi Accredited by NAAC with A+ Grade & ISO 9001:2015 Certified Institution

I SEMESTER

SL Commo Codo			Catagoria	Teaching	Teaching Hours / Week		Examination (Marks)			Cree litter		
No	Course Code	Course The	Category	Dept	L	Т	Р	Hrs	CIE	SEE	Tota l	Credits
1	23MCPC511	Mathematical Foundation for Computer Applications	РС	Mathematics	3	2	-	3	50	50	100	4
2	23MCPC512	Data Structures	PC	MCA	3	-	2	3	50	50	100	4
3	23MCPC513	Database Management Systems	РС	МСА	3	-	2	3	50	50	100	4
4	23MCPC514	Web Technologies	PC	MCA	4	-	-	3	50	50	100	4
5	23MCPC515	Design and Analysis of Algorithms	РС	MCA	4	-	-	3	50	50	100	4
6	23MCPC516	Software Engineering	РС	МСА	4	-	-	3	50	50	100	4
7	23MCAU517	Basics of Computer Programming *	AU	МСА	-	-	-	-	-		-	
			Total	Credits								24

* Mandatory non-credit audit course

(A Unit of Rajalaxmi Education Trust[®], Mangalore) Autonomous Institute affiliated to VTU, Belagavi, Approved by AICTE, New Delhi Accredited by NAAC with A+ Grade & ISO 9001:2015 Certified Institution

II SEMESTER

ST				Toophing	Т	each	ing		Exam	ination		
	Course Code	Course Title	Category	Dent	Hours / Week			(M	Iarks) Credits	Credits		
INO				Dept	L	Т	Р	Hrs	CIE	SEE	Total	
1	23MCPC521	Operating System with LINUX Programming	РС	МСА	3	-	2	3	50	50	100	4
2	23MCPC522	Object-Oriented Programming with Java	РС	МСА	3	-	2	3	50	50	100	4
3	23MCPC523	Computer Networks	РС	МСА	4	-	-	3	50	50	100	4
4	23MCPC524	Non-Relational Databases	PC	MCA	4	-	-	3	50	50	100	4
5	23MCHM525	Research Methodology & IPR	НМ	МСА	4	-	-	3	50	50	100	4
6	23MCPE526X	Professional Elective 1	PE	МСА	3	-	-	3	50	50	100	3
7	23MCSE527	Mini-Project	SE	MCA	-	-	2	2.5	50	50	100	2
Total Credits							25					

MATHEMATICAL FOUNDATION FOR COMPUTER APPLICATIONS						
Semester	Ι	CIE Marks	50			
Course Code	23MCPC511	SEE Marks	50			
Teaching Hours/Week (L:T:P)	3:2:0	Exam Hrs	03			
Total Hours	60 (40 hrs Theory+20 hrs Tutorials)	Credits	04			
Course Learning Objectives:						
This course is designed to						
1. Lay a strong foundation of Sets, Relations and Functions to perform competent operations associated with them						
2 Impart knowledge of Mathe	matical logic empowering students to pro	ficiently solve	a variety of			
logical problems.	matical logic empowering students to pro	ficientry solve a	a variety of			
3. Introduce the basic principl	es of Graph theory and develop the ab	ility to analyze	graphs by			
exploring their properties.						
4. Establish a foundation in s	statistical methods to effectively model	and interpret	data, make			
predictions, and draw meaning	ngful conclusions.					
5. Build a strong foundation in	probability theory to solve problems invol	lving random pł	nenomena.			
Module 1: Sets	s, Relations and Functions	No. of H	lrs: 12			
Sets, Relations and Functions:	Basics of Set theory, Cartesian product of	of Sets, Relation	ns and their			
properties, Relation matrix & Di	graph of relations, Equivalence relations &	& Partitions.				
Functions - Types of functions	, Function composition and Inverse func	tion, Application	ons of sets,			
relations and functions to solve	simple real life problems. Introduction to	mathematical c	computation			
using MATLAB.			-			
Self-study: Representing sets,	performing set operations, and investigat	ting Relation m	natrix using			
MATLAB.		C	C			
Modu	le 2: Mathematical logic	No. of H	Irs: 12			
Mathematical Logic: Basic of	connectivity and Truth table, Logical	equivalences,	Quantifiers,			
Predicative Logic, Free and Bo	und variables, Rules of inference, Proof	s of theorems -	Induction,			
Direct, Indirect, and Proof by Co	ontradiction.					
Self-study: Performing logical of	perations using MATLAB.					
Modul	e 3: Graph theory	No. of H	lrs: 12			
Graph theory: Graphs & Gr	raph models, Subgraphs, Complement	and Graph Iso	omorphism,			
Connectivity & Shortest Path algorithms - Depth First Search, Breadth First Search and problems,						
Euler's & Hamiltonian paths, Graph theory applications in solving real-life problems.						
Self-study: Representing graphs, and determining its combinatorial properties using MATLAB						
Mod	lule 4: Statistics	No. of H	lrs: 12			
Statistics: Curve fitting by the method of least squares, fitting of curves – Polynomial and Exponential.						
Correlation and Linear regressio	n, Applications of Curve fitting and Linea	ar Regression in	addressing			
real-life problems.						
Self-study: Computing correlati	on coefficient, fitting of curves using MA'	TLAB.				

Module 5: Probability	No. of Hrs: 12
Probability: Basic concepts of probability, properties of probability, Conditi	ional probability, Bayes'
theorem, Application of probability in solving real-life problems.	
Self-study: Computing conditional probability, expectation and variance usin	ng MATLAB
Course Outcomes:	
At the end of the course, the student will be able to:	
CO1: Illustrate the concepts of Sets, Relations & Functions, Mathematical lo	gic, Graph theory,
Statistics and Probability.	
CO2: Apply the concepts of Sets, Relations & Functions, Mathematical logic	c, Graph theory,
Statistics and Probability to solve related problems.	
CO3: Solve real-life problems based on the concepts of Sets, Relations & Fu	nctions, Mathematical
logic, Graph theory, Statistics and Probability.	
CO4: Make use of MATLAB to perform mathematical computations related	to sets, relations and
functions, Mathematical logic, curve fitting, linear regression, graphs in	n MATLAB.
TEXT BOOKS	
1. Kenneth H Rosen, Discrete Mathematics and its Applications, (8th	ed), Tata McGraw-Hill
Education Private Limited, 2023.	
2. Ronald E. Walpole, Sharon L Myers, Probability and Statistics for Engin	neers and Scientists, (9 th
ed), Pearson Education, 2022.	
REFERENCE BOOKS	
1. Sheldon Ross, A First Course in Probability, (10 th ed), Pearson, 2023.	
2. J.K Sharma, Discrete Mathematics, (4 rd ed), Macmillan Publishers India	, 2018.
3. Oliver C. Ibe, Fundamentals of Applied Probability and Random Pro	ocess, (2nd ed), Elsevier
Academic Press, 2023.	
WEB LINKS:	

- 1. https://nptel.ac.in/courses/111107058
- 2. <u>https://onlinecourses.nptel.ac.in/noc20_cs82/preview</u>
- 3. https://archive.nptel.ac.in/courses/111/105/111105042/

DATA STRUCTURES						
Semester	Ι	CIE Mar	ks	50		
Course Code	23MCPC512	SEE Mar	:ks	50		
Teaching Hours/Week (L:T:P)	3:0:2	Exam Hr	S	03		
Total Hours	64 (40 hrs Theory+24 hrs Lab)	Credits		04		
Course Learning Objectives:						
This course is designed to						
1. Learn the fundamentals of	data structures.					
2. Provide the knowledge of b	basic data structures and their impl	ementation	IS.			
3. Familiarize students in write	ting efficient programs using appro	priate data	structures.			
4. Develop skills to apply the	knowledge of data structures in pr	oblem solv	ving.			
Module 1 : Classi	fication of Data Structures		No. of H	rs: 13		
Primitive and Non-Primitive, L	inear and Nonlinear; Data struct	ure Operat	ions, Stack	: Definition,		
Representation, Operations and	Applications: Polish and reverse I	olish expr	ressions, Inf	ix to postfix		
conversion, evaluation of postfit	x expression, infix to prefix, post	fix to infix	conversion	. Recursion:		
Factorial, GCD, Fibonacci Seque	ence, Tower of Hanoi.					
Laboratory Component						
1. Write a C program to imple	ement stack with the following ope	erations:				
i. Push an element on to st	ack.					
ii. Pop an element from the	e stack.					
2. Implement a program in C	for converting a given Infix Expre	ssion to Po	stfix Expres	ssion.		
3. Write a C program to find t	the factorial of a given number using	ng recursio	n.			
Module 2: Qu	eue and its Applications	_	No. of H	rs: 12		
Queue: Definition, Representation	on, Queue Variants: Simple Queu	e, Circular	Queue, Pri	ority Queue,		
Double-Ended Queue; Application	ons of Queues, Operations on Que	ue, Progran	nming Exar	nples.		
Laboratory Component		1. 0	c ·			
2. Design, develop, and execu	ite a program in C to simulate the w	orking of a	a queue of ir	itegers using		
an array. Perform the following operations:						
i. Insert						
ii. Delete						
iii. Display.						
Modul	e 3: Linked List		No. of H	rs: 13		
Limitations of array implementation, Memory Management: Static (Stack) and Dynamic (Heap)						
Memory Allocation, Memory	management functions. Definit	tion, Repr	esentation,	Operations:		
getnode() and freenode() opera	tions, Types: Singly Linked List	. Linked li	ist as a Da	ta Structure,		
Inserting and removing nodes from a list, Linked implementations of stacks and queues, Header nodes.						

MITE Divent Solutions

MANGALORE INSTITUTE OF TECHNOLOGY & ENGINEERING

(A Unit of Rajalaxmi Education Trust[®], Mangalore)

Autonomous Institute affiliated to VTU, Belagavi, Approved by AICTE, New Delhi Accredited by NAAC with A+ Grade & ISO 9001:2015 Certified Institution

Laboratory Component 1. Write a C program to simulate the working of a singly linked list with the following operations: a.Insert b.Delete c.Display 2. Develop a C program to demonstrate the operations on a stack using singly linked lists. Module 4 : Trees and Graph No. of Hrs: 13 Terminology, Binary Trees, Properties of Binary trees, Array and linked Representation of Binary Trees, Binary Tree Traversals - In-order, Post-order, Pre-order Graphs: Definitions, Terminologies, Matrix and Adjacency List Representation of Graphs, Elementary Graph, Operations, Traversal methods: Breadth First Search and Depth First Search. Laboratory Component 1. Develop C programs on binary trees. (Construct a binary search tree and traverse the tree using all the methods i.e., In-order, Post-order, Pre-order). No. of Hrs: 13 Module 5 : Sorting and Searching Brute Force: Selection Sort and Bubble Sort, Sequential Search, Divide-and-Conquer: Merge sort, Quicksort, Binary Search, Decrease-and-Conquer: Insertion Sort, Shell sort, Sequential search, Indexed sequential search, Binary search, Binary Tree Search. Laboratory Component Write a C program to implement the following search techniques: 1. i. Linear Search ii. Binary Search Write a C program to implement the following sorting algorithms using user-defined functions: 2. i. Bubble sort (Ascending order) ii. Selection sort (Descending order) **Course Outcomes:** At the end of the course, the student will be able to: **CO1:** Identify the basic concepts of data structures, its applications and dynamic memory management. **CO2:** Compare the different sorting and searching techniques. **CO3**: Illustrate on the various operations with trees, graphs and traversal mechanisms. **CO4:** Examine the operational aspects of stacks, queues and linked lists in problem solving. **TEXT BOOKS** 1. Ellis Horowitz and Sartaj Sahni, Fundamentals of Data Structures in C, (2nd ed), Universities Press. 2014. 2. Seymour Lipschutz, Data Structures Schaum's Outlines, (Revised 1st ed), McGraw Hill, 2014.

3. Bala Guruswamy, *Programming in ANSI C*, (8th ed), McGraw Hill, 2019.

(A Unit of Rajalaxmi Education Trust[®], Mangalore) Autonomous Institute affiliated to VTU, Belagavi, Approved by AICTE, New Delhi Accredited by NAAC with A+ Grade & ISO 9001:2015 Certified Institution

REFERENCE BOOKS

- 1. Gilberg & Forouzan, *Data Structures: A Pseudocode approach with C*, (2nd ed), Cengage Learning, 2014.
- 2. Reema Thareja, *Data Structures using C*, (3rd ed), Oxford Press, 2012.
- 3. Kenneth A Berman and Jerome L Paul, *Algorithms*, (2nd ed), Cengage Learning India Pvt Ltd, 2002.

- 1. https://nptel.ac.in/courses/106/102/106102064/
- 2. www.javatpoint.com/tree-vs-graph-data-structure
- 3. www.mygreatlearning.com/blog/data-structures-using-c/#binary-tree
- 4. https://archive.nptel.ac.in/courses/106/102/106102064/

DAT	ABASE MANAGEMENT SYST	EMS				
Semester	Ι	CIE Marks	50			
Course Code	23MCPC513	SEE Marks	50			
Teaching Hours/Week (L:T:P)	3:0:2	Exam Hrs	03			
Total Hours	64 (40 hrs Theory+24 hrs Lab)	Credits	04			
Course Learning Objectives:						
This course is designed to						
1. Provide a strong foundation	in database concepts, technology, a	and practice.				
2. Practice SQL programming	through a variety of database probl	ems.				
3. Demonstrate the use of conc	urrency and transactions in a datab	ase system.				
4. Build database applications	for real-world problems.					
Module 1 : In	troduction to Databases	No. of	Hrs: 12			
Introduction to Databases: Intro	oduction, Characteristics of databa	se approach, Advant	ages of using			
the DBMS approach, History of	of database applications. Overview	ew of Database La	inguages and			
Architectures: Data Models, Scher	nas, and Instances. Three schema a	rchitecture and data in	ndependence,			
database languages, and interface	es, The Database System environr	nent. Conceptual Da	ta Modelling			
using Entities and Relationships:	Entity types, Entity sets, attributes	s, roles, and structura	al constraints,			
Weak entity types, ER diagrams.						
Laboratory Component						
1. Consider the following sche	ma: STUDENT (USN, name, date	e_of_birth, branch, m	nark1, mark2,			
mark3, total, GPA).						
Execute the following querie	es:					
a. Update the column tota	al by adding the columns mark1, m	ark2, mark3.				
b. Find the GPA score of	all the students.					
c. Find the students who	were born on a particular year of bi	rth from the date_of_	birth column.			
d. List the students who a	re studying in a particular branch o	of study.				
e. Find the maximum GP	A score of the student branch-wise	•				
f. Find the students whos	e name starts with the alphabet "S'					
g. Find the students whos	e name ends with the alphabet "Al	{ ".				
h. Delete the student deta	ils whose USN is given as 1001.					
2. Consider the following data	base of student enrollment in cou	rses and books ado	pted for each			
course.						
STUDENT (regno#: string, name: string, major: string, bdate: date)						
COURSE (course#: int, cname: string, dept: String)						
TEXT(book_ISBN#: int, book_title: string, publisher: string,author:string)						
ENROLL (regno#: string, course#: int, sem: int, marks: int)						
BOOK_ADOPTION (course	e#: int, sem: int, book_ ISBN: int)					
Execute SQL queries for the	following :					
a. List out the student details, and their course details. The records should be ordered in a						

(A Unit of Rajalaxmi Education Trust[®], Mangalore) Autonomous Institute affiliated to VTU, Belagavi, Approved by AICTE, New Delhi Accredited by NAAC with A+ Grade & ISO 9001:2015 Certified Institution

semester wise manner.

- b. List out the student details under a particular department whose name is ordered in a semester wise.
- c. List out all the book details under a particular course.
- d. Find out the Courses in which the number of students studying will be more than 2.
- e. Find out the Publisher who has published more than 2 books.

Module 2: Relational ModelNo. of Hrs: 13

Relational Model: Relational Model Concepts, Relational Model Constraints and relational database schemas, Update operations, transactions, and dealing with constraint violations. Relational Algebra: Unary and Binary relational operations, additional relational operations (aggregate, grouping, etc.) Examples of Queries in relational algebra. Mapping Conceptual Design into a Logical Design: Relational Database Design using ER-to-Relational mapping.

Laboratory Component

- 1. Design an ER-diagram for the following scenario, Convert the same into a relational model and then solve the following queries. Consider a Cricket Tournament "ABC CUP" organized by an organization. In the tournament there are many teams contesting each having a Teamid, Team_Name, City, a coach. Each team is uniquely identified by using Teamid. A team can have many Players and a captain. Each player is uniquely identified by Playerid, having a Name, and multiple phone numbers, age. A player represents only one team. There are many Stadiums to conduct matches. Each stadium is identified using Stadiumid, having a stadium_name, Address (involves city, area_name, pincode). A team can play many matches. Each match played between the two teams in the scheduled date and time in the predefined Stadium. Each match is identified uniquely by using Matchid. Each match won by any of the one team that also wants to record in the database. For each match man_of_the match award given to a player. Execute the following queries:
 - a. Display the youngest player (in terms of age) Name, Team name, age in which he belongs to the tournament.
 - b. List the details of the stadium where the maximum number of matches were played.
 - c. List the details of the player who is not a captain but got the man_of _match award at least in two matches.
 - d. Display the Team details who won the maximum matches.
 - e. Display the team name where all its won matches played in the same stadium.

Module 3: Structured Query Language	No. of Hrs: 13
SQL: SQL data definition and data types, specifying constraints in SQL, ret	rieval queries in SQL,
INSERT, DELETE, and UPDATE statements in SQL, Additional features of S	QL. Advanced Queries:
More complex SQL retrieval queries, Specifying constraints as assertions and a	ction triggers, Views in
SQL. Database Application Development: Accessing databases from application	ons, An introduction to
JDBC, JDBC classes and interfaces, SQLJ, Stored procedures.	

Laboratory Component

(A Unit of Rajalaxmi Education Trust[®], Mangalore) Autonomous Institute affiliated to VTU, Belagavi, Approved by AICTE, New Delhi Accredited by NAAC with A+ Grade & ISO 9001:2015 Certified Institution

1. A country wants to conduct an election for the parliament. A country having many constituencies. Each constituency is identified uniquely by Constituency_id, having the Name, belongs to a state, Number_of_voters. A constituency can have many voters. Each voter is uniquely identified by using Voter_id, having the Name, age, address (involves Houseno, city, state, pincode). Each voter belongs to only one constituency. There are many candidates contesting in the election. Each candidate is uniquely identified by using candidate_id, having Name, phone_no, age, state. A candidate belongs to only one party. There are many parties. Each party is uniquely identified by using Party_id, having Party_Name, Party_symbol. A candidate can contest from many constituencies under the same party. A party can have many candidates contesting from different constituencies. No constituency having the candidates from the same party. A constituency can have many contesting candidates belonging to different parties. Each voter votes only one candidate of his/her constituency.

Execute the following queries:

- a. List the details of the candidates who are contesting from more than one constituency which belong to different states.
- b. Display the state name having the maximum number of constituencies.
- c. Create a stored procedure to insert the tuple into the voter table by checking the voter age. If the voter's age is at least 18 years old, then insert the tuple into the voter else display the "Not an eligible voter msg".
- d. Create a stored procedure to display the number_of_voters in the specified constituency. Where the constituency name is passed as an argument to the stored procedure.
- e. Create a TRIGGER to UPDATE the count of "Number_of_voters" of the respective constituency in the "CONSTITUENCY" table , AFTER inserting a tuple into the "VOTERS" table.

Module 4 : Normalization	No. of Hrs: 13
Normalization: Database Design Theory - Introduction to Normalization	using Functional and
Multivalued Dependencies: Informal design guidelines for relation schema, Fu	nctional Dependencies,
Normal Forms based on Primary Keys, Second and Third Normal Forms, Boyo	ce-Codd Normal Form,
Multivalued Dependency and Fourth Normal Form, Join Dependencies and	d Fifth Normal Form.
Examples of normal forms. Normalization Algorithms: Inference Rules, Null	s Dangling tuples and
alternate Relational Designs dependencies and 4NF.	

(A Unit of Rajalaxmi Education Trust[®], Mangalore) Autonomous Institute affiliated to VTU, Belagavi, Approved by AICTE, New Delhi Accredited by NAAC with A+ Grade & ISO 9001:2015 Certified Institution

Laboratory Component

- Design an ER-diagram for the following scenario, Convert the same into a relational model, normalize Relations into a suitable Normal form and then solve the following queries. A country can have many Tourist places. Each Tourist place is identified by using tourist_place_id, having a name, belonging to a state, capital city of that state, history. There are many Tourists visiting tourist places every year. Each tourist is identified uniquely by using Tourist_id, having a Name, age, Country and multiple email ids. A tourist visits many Tourist places, it is also required to record the visited_date in the database. A tourist can visit a Tourist place many times at different dates. A Tourist place can be visited by many tourists either on the same date or at different dates. Queries:
 - a. List the state name which has the maximum number of tourist places.
 - b. List details of Tourist places where the maximum number of tourists visited.
 - c. List the details of tourists visiting all tourist places from the state "KARNATAKA".
 - d. Display the details of the tourists who visited at least one tourist place of the state, but visited all tourist places in all states.
 - e. Display the details of the tourist place visited by the tourists of all countries.

Module 5: Transaction Processing and Concurrency Control No.	of Hrs: 13
--	------------

Transaction Processing: Introduction to Transaction Processing, Transaction and System concepts, Desirable properties of Transactions, characterizing schedules based on recoverability, characterizing schedules based on Serializability, Transaction support in SQL.

Concurrency Control in Databases: Two-phase locking techniques for Concurrency control, Concurrency control based on Timestamp ordering, Multi version Concurrency control techniques, Validation Concurrency control techniques.

Course Outcomes:

At the end of the course, the student will be able to:

CO1: Identify and define database objects, enforce integrity constraints on a database using RDBMS.

- **CO2:** Recognize SQL queries for database manipulation and summarize the basics of query evaluation.
- **CO3:** Use simple database systems to relate the concept of transaction, concurrency control and recovery.
- **CO4:** Investigate applications to interact with databases, tuples and domain relational expressions from queries.

TEXT BOOKS

- 1. Ramez Elmasri, Shamkant B. Navathe, *Fundamentals of Database Systems*. (7th ed), Pearson, 2017.
- 2. Ramakrishnan and Gehrke, *Database Management Systems*, (3rd ed), McGraw Hill, 2014.

REFERENCE BOOKS

1. Abraham Silberschatz, Henry F. Korth and S. Sudarshan, *Database System Concepts*. (6th ed), Tata Mcgraw Hill Education Private Limited, 2011.

(A Unit of Rajalaxmi Education Trust[®], Mangalore) Autonomous Institute affiliated to VTU, Belagavi, Approved by AICTE, New Delhi Accredited by NAAC with A+ Grade & ISO 9001:2015 Certified Institution

- 1. <u>https://www.youtube.com/watch?v=3EJlovevfcA</u>
- 2. <u>https://www.youtube.com/watch?v=9TwMRs3qTcU</u>
- 3. <u>https://www.youtube.com/watch?v=ZWl0Xow304I</u>
- 4. https://www.youtube.com/watch?v=4YilEjkNPrQ
- 5. <u>https://www.youtube.com/watch?v=CZTkgMoqVss</u>

WEB TECHNOLOGIES							
Semester	Ι	CIE Marks	50				
Course Code	23MCPC514	SEE Marks	50				
Teaching Hours/Week (L:T:P)	(4:0:0)	Exam Hrs	03				
Total Hours	52	Credits	04				
Course Learning Objectives:							
This course is designed to							
1. Learn some basic tags of XHTML5.							
2. Implement simple web page	s using XHTML5 and CSS.						
3. Develop dynamic document	s using JavaScript with CSS.						
4. Create dynamic web pages u	ising AngularJS, ReactJS code	e and connection	n to a server.				
Module 1 : Introdu	iction to XHTML5 and CSS		No. of Hrs: 10				
Web browsers, web servers, MIM	E, URL, HTTP Introduction	to XHTML5 t	ags, Basic syntax and				
structure, text markups, images, li	sts, tables, progress, Media	tags-audio and	video, forms, frames.				
Introduction to CSS Levels of CSS	, Selectors, Font, color and Te	ext Properties, H	BOX Model, Span and				
Div tags.							
Module	2: JavaScript		No. of Hrs: 10				
Introduction to JavaScript, Control s	statements, Arrays and function	ons, Pattern mate	ching, Element Access,				
Event Handling.							
Module	3: Angular JS		No. of Hrs: 10				
Introduction to AngularJS, Directive	ves, Expressions, Directives,	Controllers, Fil	ters, Services, Events,				
Forms, Validations, Examples.							
Module 4 : Introdu	ction to the MERN stack		No. of Hrs: 10				
Introduction, The MVC Architectur	al Pattern, MERN Componen	ts React, Node.j	s, Express, MongoDB,				
Advantages of MERN, Isomorphic.							
Module 5 : Understan	ding React and Web Server		No. of Hrs: 12				
Welcome to React- Obstacles and	Roadblocks, Reacts Future, S	Server setup, N	VM, Node Js, Project,				
NPM, Express, Build time JSX com	pilation- Separate Script File	, Transform, Au	tomate, React Library,				
React Components- React classes, Composing components, passing data using properties, property							
validation, using children's Dynamic composition.							
Course Outcomes:							
At the end of the course, the student will be able to:							
CO1: Describe the concepts of CSS and XHTML5.							
CO2: Explain the process of creating a web page using XHTML5, JavaScript and CSS.							
CO3: Produce dynamic web pages	CO3: Produce dynamic web pages using AngularJS.						
CO4: Make use of the dynamic con	nectivity between ReactJS co	de and a Server.					
	-						

(A Unit of Rajalaxmi Education Trust[®], Mangalore) Autonomous Institute affiliated to VTU, Belagavi, Approved by AICTE, New Delhi Accredited by NAAC with A+ Grade & ISO 9001:2015 Certified Institution

TEXT BOOKS

- 1. Chris Bates, *Web Programming*, (3rd ed), Wiley Publications, 2007.
- 2. Robert W. Sebesta, *Programming the World Wide Web*, (4th ed), Pearson education, 2012.
- 3. *HTML5 Black Book*, (3rd ed), Dreamtech Press, 2019.
- 4. Anthony Accomazzo, Ari Lerner, Nate Murray, Clay Allsopp, David Gutman, and Tyler McGinnis, *Fullstack React: The Complete Guide to ReactJS and Friends*, (1st ed), Fullstack.io, 2017.
- 5. Greg Lim, *Beginning MERN Stack: Build and Deploy a Full Stack MongoDB, Express, React, Node.js App*, (1st ed), Amazon Digital Services LLC, 2021.

REFERENCE BOOKS

- 1. Uttam K Roy, Web Technologies, (1st ed), Oxford University Press, 2010.
- 2. M. Deitel, P.J. Deitel, A. B. Goldberg, *Internet & World Wide Web: How to Program*, (5th ed), Pearson Education, 2008.

- 1. <u>www.w3schools.com/JQuery/default.asp</u>
- 2. https://www.coursera.org/specializations/web-applications
- 3. https://legacy.reactjs.org/docs/getting-started.html
- 4. www.mongodb.com/languages/mern-stack-tutorial

DESIGN AND ANALYSIS OF ALGORITHMS						
Semester	Ι	CIE Marks	50			
Course Code	23MCPC515	SEE Marks	50			
Teaching Hours/Week (L:T:P)	(4:0:0)	Exam Hrs	03			
Total Hours	52	Credits	04			
Course Learning Objectives:						
This course is designed to						
1. Acquire knowledge of basic	algorithms and their efficiency	y analysis.				
2. Analyze the asymptotic perfe	ormance of algorithms.					
3. Introduce different algorithm	design paradigms with illustr	ative problems.				
4. Synthesize efficient algorithm	ns in common engineering des	sign situations.				
Module	1 : Introduction		No. of Hrs: 12			
Introduction: Notion of an Algor	ithm, Algorithm Specification	n, Analysis Fram	ework, Performance			
Analysis: Space complexity, Tin	ne complexity and notation	(o), Mathematica	al analysis of Non-			
Recursive and recursive Algorithm	s), Asymptotic Notations: Big	-Oh notation (O),	Omega notation (Ω),			
Theta notation (Little-oh) with	Examples, Important Problem	m Types: Sorting	g, Searching, String			
processing, Graph Problems, Com	binatorial Problems. Fundame	ental Data Structu	ires: Stacks, Queues,			
Graphs, Trees, Sets and Dictionari	es.					
Module 2: 1	Divide and Conquer		No. of Hrs: 10			
Divide and Conquer: General me	thod, Binary search, Recurre	nce equation for	divide and conquer,			
Finding the maximum and mini	mum, Merge sort, Quick se	ort, Strassen's m	atrix multiplication,			
Advantages and Disadvantages of	divide and conquer. Decrease	e and Conquer Ap	proach: Topological			
Sort. Transform and Conquer App	roach: Heaps and Heap Sort.					
Modul	e 3: Algorithms		No. of Hrs: 10			
Greedy Method: General method	, Coin Change Problem, Kna	apsack Problem, J	Job sequencing with			
deadlines. Minimum cost spanning	trees: Prim's Algorithm, Krus	kal's Algorithm. S	Single source shortest			
paths: Dijkstra's Algorithm. Optim	al Tree problem: Huffman Tre	ees and Codes.				
Module 4 : D	ynamic Programming		No. of Hrs: 10			
Dynamic Programming: General	Dynamic Programming: General method with Examples, Multistage Graphs. Transitive Closure:					
Warshall's Algorithm, All Pairs Shortest Paths: Floyd's Algorithm, Optimal Binary Search Trees,						
Knapsack problem, Bellman-Ford Algorithm, Travelling SalesPerson problem						
Module	5: Backtracking	_	No. of Hrs: 10			
Backtracking: General method,	N-Queens problem, Sum o	f subsets proble	m, Graph coloring,			
Hamiltonian cycles. Programme and Bound: Assignment Problem, Travelling SalesPerson problem, 0/1						
Knapsack problem: LC Programme and Bound solution, Probabilistic and Randomized Algorithms:						
Probabilistic Algorithms Randomiz	zing deterministic Algorithms:	MonteCarlo Algo	orithm, Biased Monte			
Carlo Algorithms: A Montecarlo a	lgorithm for testing polynomia	al quality.				

(A Unit of Rajalaxmi Education Trust[®], Mangalore) Autonomous Institute affiliated to VTU, Belagavi, Approved by AICTE, New Delhi Accredited by NAAC with A+ Grade & ISO 9001:2015 Certified Institution

Course Outcomes:

At the end of the course, the student will be able to:

- **CO1:** Describe the approaches used in estimating the time and space complexity of algorithms.
- CO2: Discuss Brute Force, Divide and Conquer algorithms and measure their performance.
- **CO3:** Classify the different Decrease and Conquer algorithms and discuss the space and time tradeoffs techniques.
- **CO4:** Characterize the features of various graphical problems with the help of a suitable algorithmic technique.

CO5: Evaluate the limitations of Backtracking, Branch & Bound technique in solving problems.

TEXT BOOKS

- 1. Anany Levitin, Introduction to the Design and Analysis of Algorithms, (2nd ed), Pearson, 2009.
- 2. Ellis Horowitz, Sartaj Sahni and Rajasekaran, *Computer Algorithms/C++*, (2nd ed), Universities Press, 2014.
- 3. Kenneth A Berman and Jerome L Paul, *Algorithms : Foundations and Design Strategies*, (1st ed), Algorithms, 2017.

REFERENCE BOOKS

- 1. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, *Introduction to Algorithms*, (3rd ed), MIT Press, 2009.
- 2. S. Sridhar, *Design and Analysis of Algorithms*, (2nd ed), Oxford (Higher Education), 2023.

- 1. <u>lms.vtu.ac.in/econtent/courses/CSE/06CS43/index.php</u>
- 2. <u>https://nptel.ac.in/courses/106/101/106101060/</u>
- 3. <u>http://cse01-iiith.vlabs.ac.in/</u>

	SOFTWARE ENGINEE	RING	
Semester	Ι	CIE Marks	50
Course Code	23MCPC516	SEE Marks	50
Teaching Hours/Week (L:T:P)	4:0:0	Exam Hrs	03
Total Hours	52	Credits	04
Course Learning Objectives: This course is designed to 1. Outline software engineering principles and activities involved in building large software programs. 2. Explain the fundamentals of Object-Oriented concepts. 3. Identify ethical and professional issues and explain why they are of concern to software engineers. 4. Describe the process of requirements gathering and requirements classification. 5. Build effective software engineering applications in real-time. Module 1: Introduction No. of Hrs: 10 Professional software development: Software engineering ethics. Software processes: Software process models, Process activities, Coping with change, The rational unified process. Module 2: Requirements No. of Hrs: 12 Requirements engineering: Functional and non-functional requirements, The Software requirements document, Requirements specification, Requirements engineering processes, Requirements elicitation and analysis, Requirements validation, Requirements management.			
System modeling: Context mod	els, Interaction models, Struc	tural models, Be	havioral models, Model-
Mo	dule 3: Design		No. of Hrs: 10
Architectural design: Architec	ctural design decisions, Arcl	hitectural views	Architectural patterns,
Application architecture.			1 /
Software testing: Development	testing, Test-driven developm	ent, Release testi	ng, User testing.
Module 4 : Distri	buted Software Engineering	5	No. of Hrs: 10
Distributed software engineeri patterns for distributed systems, s Service-oriented architecture : development with services.	ng: Distributed systems issues Software as a service. Services as reusable comp	s, Client–server	computing, Architectural e engineering, Software
Module 5:	Project Management		No. of Hrs: 10
Project management: Risk man	agement, Managing people, T	eamwork.	-
Project planning : Software techniques. Quality management	pricing, Plan-driven develop nt: Software quality, Softwa cs.	pment, Project re standards, R	scheduling, Estimation eviews and inspections,
Software measurement and metri			
Course Outcomes:			
Course Outcomes: At the end of the course, the stud	ent will be able to:		
Course Outcomes: At the end of the course, the stud CO1: Recognize the importance	ent will be able to: of the various software model	s while developi	ng effective applications.
Course Outcomes: At the end of the course, the stud CO1: Recognize the importance CO2: Explain the need for an SR	ent will be able to: of the various software model S while designing efficient so	s while developi ftware applicatio	ng effective applications.

(A Unit of Rajalaxmi Education Trust[®], Mangalore) Autonomous Institute affiliated to VTU, Belagavi, Approved by AICTE, New Delhi Accredited by NAAC with A+ Grade & ISO 9001:2015 Certified Institution

CO4: Analyze the scope of a project plan to maintain a good project management system.

TEXT BOOKS:

- 1. Ian Sommerville, Software Engineering, (9th ed), Pearson Education, 2012.
- 2. Pankaj Jalote, An Integrated Approach to Software Engineering, (3rd ed), Springer New York, 2005.

REFERENCE BOOKS:

- 1. Roger S. Pressman, Bruce R Maxim, *Software Engineering-A Practitioner's approach*, (9th ed), Tata McGraw Hill, 2023.
- 2. Stephan R. Schach, *Object Oriented Software Engineering*, (1st ed), Tata McGraw Hill, 2008.
- 3. Michael Blaha, James Rumbaugh, *Object Oriented Modelling and Design with UML*, (2nd ed), Pearson Education, 2005.

- 1. http://en.wikipedia.org/wiki/Software_engineering
- 2. http://www.cmcrossroads.com/bradapp/links/swe-links.html

BAS	SICS OF COMPUTER PROGRAM	AMING		
Semester	Ι	CIE Marks	-	
Course Code	23MCAU517	SEE Marks	-	
Teaching Hours/Week (L:T:P)	-	Exam Hrs	-	
Total Hours	35 (25 hrs Theory + 10 hrs Lab)	Credits	-	
Course Learning Objectives: This course is designed to				
1. Learn the basic components	s of a computer system and their char	acteristics.		
2. Know the traditional progra	mming model and to write programs	with the C langu	age.	
3. Identify the elements of mo	dern instruction sets and their impact	t on processor des	ign.	
Module 1 : I	Basics of C Programming	No.	of Hrs: 05	
C Programming: Decision mak	ting, control structures and arrays C S	Structure, Data Ty	pes, Input-Output	
Statements, Decision making w	vith if statement, simple if statement	t, the ifelse stat	ement, nesting of	
ifelse statements, the else.if lac	dder, the switch statement, the ?: ope	erator, the goto sta	atement, the break	
statement, The while statement,	the dowhile statement, the for state	ement, nested loop	os, jumps in loops,	
the continue statement.				
Arrays: One dimensional and t	wo dimensional arrays, declaration a	and initialization	of arrays, reading,	
writing and manipulation of abo	ve types of arrays, Programming Exa	amples.		
Laboratory Component		-		
1. Program to check whether t	he given character is Lowercase or U	Uppercase or a Spe	ecial Character.	
2. Program to swap two numb	ers without using a third variable	11 1		
3 Write functions to implement string operations such as compare concatenate string length				
Convince the parameter pas	ssing techniques.	<u>I</u> ,	6 6	
Module 2: Structures No. of Hrs: 05				
Structures: Defining a structur	e, declaring structure variables, acco	essing structure m	nembers, structure	
initialization, copying and comparing structure variables, operations on individual members, array of				
structures structures within structures structures and functions. Unions size of structures Programming				
Examples.	,	,	, , ,	
Laboratory Component				
1 Implement structures to read write and compute average marks and the students scoring above and				
below the average marks for	r a class of N students	, and the stadents	seering use to unu	
2 Program to store data in structures dynamically				
2. Trogram to store data in su	dule 3. Pointers	No	of Hrs: 05	
Pointors in C : Declaring and ac	cassing pointers in C Pointer arithm	no.	Call by value Call	
hy reference Dointer as function	an arguments recursion Dessing arr	ave to functions	nassing strings to	
functions Europians returning n	ointers Dointers to functions Program	mming Examples	passing sumps to	
Laboratory Component	onters, ronters to functions, riogra	mining Examples		
1 Develop a program using a	cintors to compute the sum mean an	d standard davist	on of all alamanta	
1. Develop a program using p	conters to compute the sum, mean an	u stanuaru deviati	ion of an elements	
stored in an array of N real	numbers.			

2.

MANGALORE INSTITUTE OF TECHNOLOGY & ENGINEERING

(A Unit of Rajalaxmi Education Trust[®], Mangalore) Autonomous Institute affiliated to VTU, Belagavi, Approved by AICTE, New Delhi Accredited by NAAC with A+ Grade & ISO 9001:2015 Certified Institution

Write a program to find the reverse of a string using pointers.

Module 4 : Binary System and Combinational Logic	No. of Hrs: 05
Binary Systems and Combinational Logic: Digital Computers and Digital S	ystems, Binary Numbers,
Number Base Conversion, Octal and Hexadecimal Numbers, subtraction using	r's and r-1 complements,
Binary Code, Binary Storage and Registers, Binary Logic, Integrated Circu	its, Digital Logic Gates,
Programming Examples.	
Module 5: Basic Structure of a Computer	No. of Hrs: 05
Basic Structure of Computer Hardware and Software Computer Types,	Functional Units, Basic
Operational Concepts, Bus structure, Software, Performance, Multiprocessir	ng and Multi computers,
Machine Instruction: Memory Locations and Addresses, Memory Operations, In	structions and Instruction
Sequencing, Addressing Modes, Interrupts.	
Course Outcomes:	
At the end of the course, the student will be able to:	
CO1: Define the key concepts introduced in C programming by writing and ex	ecuting programs.
CO2: Compare the concepts of structures and pointers for the given application	n/problem.
CO3: Use the concepts of single/multi-dimensional arrays for a given problem.	
CO4: Analyze how memory organization, operations, instruction sequencing and	l interrupts are useful
in executing a given program.	
TEXT BOOKS	
1. Balaguruswamy, <i>Programming in ANSI C</i> , (8 th ed), McGraw Hill Education	on, 2019.
2. Herbert Schild, <i>The C Complete Reference</i> (4 th ed), McGraw Hill Education	on, 2000.
3. Yashwant Kanetkar, <i>Let us C</i> , (19 th ed), BPB Publications, 2022.	
REFERENCE BOOKS	
1. M. Morris Mano, <i>Digital Logic and Computer Design</i> , (1 st ed), Pearson, 20	012
2. Carl Hamacher, Zvonko Vranesic Safwat Zaky, (2012), Computer Org	ganization, $(5^{th} ed)$, Tata
McGraw-Hill, 2012.	
WEB LINKS:	
1. <u>https://www.javatpoint.com/c-programming-language-tutorial</u>	
 <u>nups://www.coursera.org/courses/query=c%20programming</u> <u>https://www.udemy.com/topic/courses/query=c%20programming/</u> 	
4 https://www.cuemath.com/numbers/binary-number-system/	
T. https://www.cucinati.com/numoers/oniary-numoer-system/	

(A Unit of Rajalaxmi Education Trust[®], Mangalore) Autonomous Institute affiliated to VTU, Belagavi, Approved by AICTE, New Delhi Accredited by NAAC with A+ Grade & ISO 9001:2015 Certified Institution

OPERATI	NG SYSTEM WITH LINUX PR	OGRAMMING	
Semester	II	CIE Marks	50
Course Code	23MCPC521	SEE Marks	50
Teaching Hours/Week (L:T:P)	3:0:2	Exam Hrs	03
Total Hours	64 (40 hrs Theory+24 hrs Lab)	Credits	04
Course Learning Objectives: This course is designed to 1. Learn the basic concepts an 2. Understand the different pr 3. Analyze the basics and mar 4. Know the basics of shell pr N Overview: Introduction to Operat Operating System Operations, D	nd structure of operating systems. Focess scheduling techniques. magement of file systems. Fogramming. Iodule 1 : Introduction ing Systems, Computer System Ar istributed Systems, Special purpo	chitecture, Operating S se systems, Computin	No. of Hrs: 12 ystem Structure, g environments,
System Structures: Operating System.	stom Samiaaa System Calls Tyr	an of Sustam Calla Su	ustom Duo guoma
Operating system structure Virtug	Vitem Services, System Cans, Type	peration System boot	/stem Programs,
Laboratory Component	in Machines, Operating system Ger	ieration, system boot.	
Laboratory Component	manda		
1. Execution of Envolvecom	la 2: Process Management		No of Ure: 12
Process Management: Process of	oncept process state process con	trol block Process Sch	eduling Process
Scheduling: Basic concepts Sche	duling criteria Scheduling Algorit	thms: FCFS SIFS Prices	ority scheduling
Round Robin Scheduling, Multi-l	evel queue scheduling. Multilevel f	eedback queue schedul	ing
Multithreaded Programming:	Overview. Multithreaded Models	Threading Issues. C) Departing-system
Examples.		, including 155405, C	perating system
Laboratory Component			
 Write a C program to sin turnaround time and waitin a. FCFS b. SJF c. Round Robin (pre- d. Priority 	nulate the following non-preempting time. emptive)	ve CPU scheduling alg	gorithms to find
Module 3:	Svnchronization and Deadlocks		No. of Hrs: 13
Process Synchronization: Critic	cal section problem. Peterson's	Solution. Synchroniz	ation hardware
Semaphore, classic problems of sy	nchronization. Monitors, Synchron	vization Examples	ation naraware,
Deadlocks: System model. Dea	adlock Characterization. Method	s for handling deadl	ocks. Deadlock
Prevention, Deadlock Avoidance.	Deadlock Detection and Recovery	from deadlock.	.,
Laboratory Component			

1. Write a C program to simulate Bankers algorithm for the purpose of deadlock avoidance.

(A Unit of Rajalaxmi Education Trust[®], Mangalore) Autonomous Institute affiliated to VTU, Belagavi, Approved by AICTE, New Delhi Accredited by NAAC with A+ Grade & ISO 9001:2015 Certified Institution

- 2. Write a C program to simulate the concept of Dining-Philosophers problem.
- 3. Write a C program to simulate producer-consumer problem using semaphores.

Module 4 : The File System

No. of Hrs: 13

The File System: The File, What's in a File name? The Parent-Child Relationship, The HOME Variable: The Home Directory, pwd, cd, mkdir, rmdir, Absolute Pathnames, Relative Pathnames, The Unix File System. Basic File Attributes: Is options, File Ownership, File Permissions, chmod, Directory Permissions, Changing the File Ownership More File Attributes: File Systems and Inodes, Hard Links, Symbolic Links, The Directory, umask, Modification and Access Times, find. The Shell: The Shell's Interpretive Cycle, Shell Offerings, Pattern Matching-The Wild-cards, Escaping and Quoting, Redirection: The Three Standard Files, Two Special Files: /dev/null and /dev/tty, pipes, tee: Creating a Tee, Command Substitution.

Laboratory Component

- 1. Write a C program to simulate the following file organization techniques
 - a. Single level directory
 - b. Two level directory
 - c. Hierarchical
- 2. Execution of file system commands.

Module 5: Shell Programming

No. of Hrs: 13

Essential Shell Programming: Shell Variables, Environment Variables, Shell Scripts, read, Using Command Line Arguments, exit and exit status of command, The Logical Operators, The if Conditional, using test and [] to Evaluate Expression, The case Conditional, expr, while: looping, for: looping with a list, set and shift.

Laboratory Component

1. Implementation of Shell programs using if condition, case and loops.

Course Outcomes:

At the end of the course, the student will be able to:

- **CO1:** Describe the basic structure of an Operating System and the concepts involved in process management.
- **CO2:** Compare the performance of different scheduling algorithms along with the policies for concurrency and deadlock management.
- CO3: Categorize the system calls used for process management and file management.
- **CO4:** Differentiate between the LINUX commands for memory management, file management and directory management.

TEXT BOOKS

- 1. Abraham Silberschatz, Peter Baer Galvin, Greg Gagne, *Operating Systems Principles*, (8th ed), Wiley India, 2009.
- 2. Sumitabha Das, UNIX Concepts and Applications, (4th ed), Tata McGraw Hill, 2006.

REFERENCE BOOKS

1. D. M. Dhamdhere, *Operating Systems – A Concept Based Approach*, (2nd ed), Tata McGraw – Hill, 2006.

(A Unit of Rajalaxmi Education Trust[®], Mangalore) Autonomous Institute affiliated to VTU, Belagavi, Approved by AICTE, New Delhi Accredited by NAAC with A+ Grade & ISO 9001:2015 Certified Institution

- 2. P. C. P. Bhatt, *Operating Systems*, (2nd ed), PHI, 2006.
- 3. W. Richard Stevens Stephen A. Rago, *Advanced Programming in the UNIX Environment*, (3rd ed), Addison Wesley, 2013.
- 4. Harvey M Deital, *Operating Systems*, (3rd ed), Addison Wesley, 1990.

- 1. https://www.coursera.org/learn/akamai-operating-systems
- 2. https://onlinecourses.nptel.ac.in/noc20_cs04/preview
- 3. https://www.udemy.com/course/the-complete-operating-systems-course-from-zero-to-expert/
- 4. <u>https://www.javatpoint.com/operating-system</u>

(A Unit of Rajalaxmi Education Trust[®], Mangalore) Autonomous Institute affiliated to VTU, Belagavi, Approved by AICTE, New Delhi Accredited by NAAC with A+ Grade & ISO 9001:2015 Certified Institution

OBJECT	I-ORIENTED PROGRAMMINO	G WITH JAVA	
Semester	II	CIE Marks	50
Course Code	23MCPC522	SEE Marks	50
Teaching Hours/Week (L:T:P)	3:0:2	Exam Hrs	03
Total Hours	64 (40 hrs Theory+24 hrs Lab)	Credits	04
Course Learning Objectives:			
This course is designed to			
1. Make students familiar v problem solving.	with the basic object-oriented pro	gramming concepts an	d apply them in
2. Use object-oriented progra	amming concepts to solve real-wor	ld problems.	
3. Explain the concept of cla	ss and objects with access control t	o represent real world e	entities.
4. Illustrate the behavior of p	programs involved in basic program	nming constructs like c	ontrol structures,
overloading, overriding, c	onstructors, string handling and ga	bage collection.	
5. Demonstrate the implement	ntation of inheritance (multilevel, h	ierarchical and multiple) by using extend
and implement keywords.			
Module 1 : OO	PS Concepts and Java Program	ning	No. of Hrs: 13
OOP Concepts : Classes and obje	ects, data abstraction, encapsulation	, inheritance, polymorp	hism, procedural
and object oriented programmin	g paradigm. Java programming:	History of java, comm	nents data types,
variables, constants, scope and	lifetime of variables, operators,	operator hierarchy, e	xpressions, type
conversion and casting, control fl	ow statements, jump statements, si	mple java stand-alone j	programs, arrays,
console input and output, formatt	ing output, constructors methods, s	tatic fields and method	s, access control,
overloading methods and constru-	ctors, recursion.		
Laboratory Component	t the following triangle of numbers		
1. Write a Java program to prim	t the following triangle of numbers.		
1 1 2			
12			
125			
1234			
12345			
a while loop. (Hint Fact of	st the factorial of the numbers 1 to $(4 = 4*3*2*1)$	10. To calculate the fact	torial value, use
Module 2: I	Multiple inheritance and interfac	e	No. of Hrs:13
Inheritance: Inheritance hierarch	ies, super and subclasses, member	access rules, super key	word, preventing
inheritance: final classes and me	thods, the object class and its met	hods; Polymorphism: c	lynamic binding,
method overriding, abstract clas	ses and methods, defining an inte	erface, implement inter	faces, accessing

implementations through interface references, extending interface.

Laboratory Components

(A Unit of Rajalaxmi Education Trust[®], Mangalore) Autonomous Institute affiliated to VTU, Belagavi, Approved by AICTE, New Delhi Accredited by NAAC with A+ Grade & ISO 9001:2015 Certified Institution

- 1. Write a Java program:
 - a. To find the area and circumference of the circle by accepting the radius from the user.
 - b. To accept a number and find whether the number is Prime or not.
- 2. Write a Java program to demonstrate Multiple inheritance using interfaces and to calculate the area of a rectangle and triangle.

Module 3: Exception Handling

No. of Hrs:12

Exception Handling: Benefits of exception handling, the classification of exceptions, exception hierarchy, checked exceptions and unchecked exceptions, usage of try, catch, throw, throws and finally, rethrowing exceptions, exception specification, built in exceptions, creating own exception subclasses.

Laboratory Components

- 1. Write a Java program to demonstrate Constructor Overloading and Method Overloading.
- 2. Write a Java program to handle divide by zero Exception.

Module 4 : Multi-Threaded programming	No. of Hrs:13

Multithreading fundamentals: The Thread Class and Runnable Interface, Creating Thread, Creating Multiple Threads, Determining When a Thread Ends, Thread Priorities, Synchronization, using Synchronization Methods, The Synchronized Statement, Thread Communication using notify(), wait() and notify All(), suspending, Resuming and stopping Threads.

Laboratory Components

1. Write a Java program to create multiple threads using different thread methods.

violule 3. GUI i logi anning And Applets	Module 5:	GUI Pro	gramming	And	Applets
--	-----------	----------------	----------	-----	---------

No. of Hrs:13

GUI Programming with Java: The AWT class hierarchy, introduction to swing, hierarchy for swing components.

Overview of some swing components: JButton, JLabel, JTextField, JTextArea, simple applications. **Layout management**: Layout manager types, border, grid and flow.

Applets: Inheritance hierarchy for applets, life cycle of an applet, passing parameters to applets.

Laboratory Components

1. Write a Java applet program which handles keyboard events.

Course Outcomes:

At the end of the course, the student will be able to:

- **CO1:** Recall the various object-oriented programming concepts and their importance while writing Java programs.
- **CO2:** Summarize the different types of inheritance with its need and usage.
- **CO3:** Apply Exception handling concepts to write effective programs in Java.

CO4: Distinguish between AWT and Swing components while creating Graphical User Interfaces.

TEXT BOOKS

- 1. Herbert Schildt and Dale Skrien, *Java Fundamentals A Comprehensive Introduction*, (1st ed), McGraw Hill, 2013.
- 2. Herbert Schildt, Java the Complete Reference, (7th ed), McGraw Hill, 2011.

(A Unit of Rajalaxmi Education Trust[®], Mangalore) Autonomous Institute affiliated to VTU, Belagavi, Approved by AICTE, New Delhi Accredited by NAAC with A+ Grade & ISO 9001:2015 Certified Institution

3. T. Budd, *Understanding Object-Oriented Programming with Java*, (Updated ed), Pearson Education, 1999.

REFERENCE BOOKS

- 1. P. J. Dietel and H. M. Dietel, Java How to program, (6th ed), Prentice Hall, 2005.
- 2. P. Radha Krishna, Object Oriented programming through Java, (1st ed), CRC Press, 2007
- 3. S. Malhotra and S. Choudhary, *Programming in Java*, (2nd ed), Oxford University Press, 2014.

- 1. https://www.codecademy.com/learn/learn-java
- 2. https://www.mygreatlearning.com/academy/learn-for-free/courses/java-programming
- 3. <u>https://onlinecourses.nptel.ac.in/noc20_cs58/preview</u>
- 4. https://www.coursera.org/specializations/object-oriented-programming

	COMPUTER NETWORK	S	
Semester	II	CIE Marks	50
Course Code	23MCPC523	SEE Marks	50
Teaching Hours/Week (L:T:P)	4:0:0	Exam Hrs	03
Total Hours	52	Credits	04
Course Learning Objectives:			
This course is designed to			
1. Learn the features of differen	t computer network topologies	5.	
2. List the required hardware to	constitute a computer network	ζ.	
3. Explain each computer netwo	ork topology physically or logi	cally.	
4. Demonstrate error detection a	and correction techniques.		
Modu	ile 1 : Introduction		No. of Hrs: 10
Introduction: Data Communication	s, Networks, The Internet, Pro	tocols & Standards, L	ayered Tasks, The
OSI model, Layers in OSI model, TO	CP/IP Protocol suite, Addressin	ng.	
Module	e 2: Physical Layer-1		No. of Hrs: 12
Physical Layer-1: Analog & Digita	al Signals, Transmission Impa	airment, Data Rate lin	mits, Performance,
Digital- digital conversion (Only Li	ne coding: Polar, Bipolar and	d Manchester coding)	, Analog-to-digital
conversion (PCM, Delta), Transmiss	ion Modes, Digital-to-analog	conversion.	
Module 3: Ph	ysical Layer-2 and Switching	5	No. of Hrs: 10
Physical Layer-2 and Switching:	Multiplexing, Spread Spectr	um, Introduction to	switching, Circuit
Switched Networks, Datagram Netw	orks, Virtual Circuit Networks	5	
Module	e 4 : Data Link Layer-1		No. of Hrs: 10
Data Link Layer-1: Error Detection	& Correction: Introduction, I	Block coding, Linear b	olock codes, Cyclic
codes, Checksum.			
Module	e 5: Data Link Layer-2		No. of Hrs: 10
Data Link Layer-2: Framing, Flow	v and Error Control, Protoco	ls, Noiseless Channel	s, Noisy channels,
HDLC, PPP (Framing, Transition ph	ases only), Random Access (C	CSMA/CD, CSMA/CA	A only).
Course Outcomes:			
At the end of the course, the student	will be able to:		
CO1: Define the basic concepts of networks like protocol, internet and OSI layers.			
CO2: Classify the transmission modes in a computer network.			
CO3: Demonstrate the different	switching techniques with its	advantages and disadv	antages.
CO4: Examine the functions of	the Data Link Layer.		
TEXT BOOKS			
1. Behrouz A Forouzan, Data C	Communication and Networkin	g, (4 th ed) ,Tata McGi	aw-Hill, 2006.
REFERENCE BOOKS			
1. Alberto Leon-Garcia, Indra	Widjaja, Communication Netw	vorks - Fundamental	Concepts and Key
architectures, (2 nd ed), Tata M	AcGraw-Hill, 2004.		

(A Unit of Rajalaxmi Education Trust[®], Mangalore) Autonomous Institute affiliated to VTU, Belagavi, Approved by AICTE, New Delhi Accredited by NAAC with A+ Grade & ISO 9001:2015 Certified Institution

- 2. William Stallings, Data and Computer Communication, (8th ed), Pearson Education, 2007
- 3. Larry L. Peterson and Bruce S. Davie, (2007), *Computer Networks A Systems Approach*, (4th ed), Elsevier, 2007.

- 1. https://elearn.daffodilvarsity.edu.bd/course/view.php?id=5457
- 2. https://onlinecourses.nptel.ac.in/noc21_cs18/preview
- 3. https://www.youtube.com/watch?v=VwN91x5i25g
- 4. https://www.javatpoint.com/computer-network-tutorial

NON-RELATIONAL DATABASES			
Semester	II	CIE Marks	50
Course Code	23MCPC524	SEE Marks	50
Teaching Hours/Week (L:T:P)	4:0:0	Exam Hrs	03
Total Hours	52	Credits	04
Course Learning Objectives:			
This course is designed to			
1. Understand the concepts of N	on-Relational database manager	nent systems.	
2. Learn about No SQL and Mor	ngoDB.		
3. Demonstrate competency in d	esigning non-relational database	e management systems	S.
Mod	ule 1 : Introduction		No. of Hrs: 10
Introduction to NoSQL: Definition	on of NoSQL, History of NoS	SQL and Different N	oSQL products.
Exploring NoSQL Exploring Mongo	DB Java/Ruby/Python, Interfac	ing and Interacting wi	th NoSQL
Mod	ule 2: NoSQL Basics		No. of Hrs: 10
NoSQL Basics: NoSQL Storage A	rchitecture, CRUD operations v	vith MongoDB, Quer	ying, Modifying
and Managing. Data Storage in	NoSQL: NoSQL Data Store	es, Indexing and or	dering datasets
(MongoDB/CouchDB/Cassandra)			
Module 3: Advanced NoSQLNo. of Hrs: 10			
Advanced NoSQL: NoSQL in Cloud, Parallel Processing with Map Reduce, Big Data with Hive.			
Module 4 : Working with NoSQLNo. of Hrs: 12			
Working with NoSQL: Surveying Database Internals, Migrating from RDBMS to NoSQL, Web			
Frameworks and NoSQL, using MySQL as a NoSQL.			
Module 5: DevelopmentNo. of Hrs: 10			
Developing Web Application with NOSQL and NOSQL Administration Php and MongoDB, Python and			
MongoDB, Creating Blog Application with PHP.			
Course Outcomes:			
At the end of the course, the student	will be able to:		
CO1: Recall the concepts of structured data and unstructured data.			
CO2: Explain the essential operations for creating and managing persistent data elements in relational			
and non-relational databases.			
CO3: Categorize the differences between a traditional RDBMS and a Non-Relational database.			
CO4: Characterize the steps involved in creating web applications with NoSQL.			
TEXT BOOK			
1. Shashank Tiwari, Professiona	el NOSQL, (1 st ed), WROX Press	s, John Wiley and Son	s, Inc, 2011.
REFERENCE BOOK			
1. Peter Membrey, Eelco Plugge and DUPTim Hawkins, The Definitive Guide to MongoDB, The			
NoSQL Database for Cloud a	nd Desktop Computing, APress,	$(1^{st} ed)$, 2010.	

(A Unit of Rajalaxmi Education Trust[®], Mangalore) Autonomous Institute affiliated to VTU, Belagavi, Approved by AICTE, New Delhi Accredited by NAAC with A+ Grade & ISO 9001:2015 Certified Institution

- 1. https://www.mongodb.com/nosql-explained
- 2. <u>https://youtu.be/aUPVpIYiLCc</u>
- 3. https://www.coursera.org/learn/introduction-to-nosql-databases

(A Unit of Rajalaxmi Education Trust[®], Mangalore) Autonomous Institute affiliated to VTU, Belagavi, Approved by AICTE, New Delhi Accredited by NAAC with A+ Grade & ISO 9001:2015 Certified Institution

RESEARCH METHODOLOGY & IPR			
Semester	II	CIE Marks	50
Course Code	23MCHM525	SEE Marks	50
Teaching Hours/Week (L:T:P)	4:0:0	Exam Hrs	03
Total Hours	52	Credits	04

Course Learning Objectives:

This course is designed to

- 1. To give an overview of the research methodology and explain the technique of defining a research problem.
- 2. Explain the functions of a literature review while performing a research study.
- 3. Learn the process of carrying out a literature search, its review, developing theoretical and conceptual frameworks and writing a review.
- 4. Make students familiar with the various research designs and their characteristics.

Module 1: Introduction to Research MethodologyNo. of Hrs: 10Research Methodology: Introduction, Meaning of Research, Objectives of Research, Motivation in
Research, Types of Research, Research Approaches, Significance of Research, Research Methods versus
Methodology, Research and Scientific Method, Importance of Knowing How Research is Done, Research
Process, Criteria of Good Research, and Problems Encountered by Researchers in India.

Module 2: Defining the Research ProblemNo. of Hrs: 12Defining the Research Problem: Research Problem, Selecting the Problem, Necessity of Defining the
Problem, Technique Involved in Defining a Problem, An Illustration. Reviewing the literature: Place of the
literature review in research, Bringing clarity and focus to your research problem, Improving research
methodology, Broadening knowledge base in research area, Enabling contextual findings, How to review
the literature, searching the existing literature, reviewing the selected literature, Developing a theoretical
framework, Developing a conceptual framework, Writing about the literature reviewed.

Module 3: Research DesignNo. of Hrs: 10Research Design: Meaning of Research Design, Need for Research Design, Features of a Good Design,
Important Concepts Relating to Research Design, Different Research Designs, Basic Principles of
Experimental Designs, Important Experimental Designs. Design of Sample Surveys: Introduction, Sample
Design, Sampling and Non-sampling Errors, Sample Survey versus Census Survey, Types of Sampling
Designs.

(A Unit of Rajalaxmi Education Trust[®], Mangalore) Autonomous Institute affiliated to VTU, Belagavi, Approved by AICTE, New Delhi Accredited by NAAC with A+ Grade & ISO 9001:2015 Certified Institution

Module 4 : Data Collection

No. of Hrs: 10

Data Collection: Experimental and Surveys, Collection of Primary Data, Collection of 02.03.2021 updated 17/ 104 Secondary Data, Selection of Appropriate Method for Data Collection, Case Study Method. Interpretation and Report Writing: Meaning of Interpretation, Technique of Interpretation, Precaution in Interpretation, Significance of Report Writing, Different Steps in Writing Report, Layout. Types of Reports, Oral Presentation, Mechanics of Writing a Research Report, Precautions for Writing Research Reports.

Module 5 : Intellectual Property (IP) Acts

No. of Hrs: 10

Intellectual Property (IP) Acts: Introduction to IP: Introduction to Intellectual Property (IP), different types of IPs and its importance in the present scenario, Patent Acts: Indian patent acts 1970.Design Act: Industrial Design act 2000. Copyright acts: Copyright Act 1957. Trade Mark Act, 1999.

Course Outcomes:

At the end of the course, the student will be able to:

- **CO1:** Identify the suitable research methods and articulate the research steps in a proper sequence for the given problem.
- **CO2:** Explain the functions of the literature review in research, carrying out a literature search, developing theoretical and conceptual frameworks and writing a review.
- **CO3:** Use data collection techniques from different sources by segregating them into primary and secondary data.
- **CO4:** Analyze some concepts/sections of CopyRight Act /Patent Act /Cyber Law/ Trademark to a given case and outline the conclusions.

TEXT BOOKS

- 1. C.R. Kothari, *Research Methodology, Methods and Techniques*,(4th ed), Gaurav Garg New Age International, 2018
- 2. Ranjit Kumar, *Research Methodology a step-by- step guide for beginners*, (3rd ed), SAGE Publications, 2011.

- 1. https://www.enago.com/academy/choose-best-research-methodology/
- 2. https://library.tiffin.edu/researchmethodologies/whatareresearchmethodologies

(A Unit of Rajalaxmi Education Trust[®], Mangalore) Autonomous Institute affiliated to VTU, Belagavi, Approved by AICTE, New Delhi Accredited by NAAC with A+ Grade & ISO 9001:2015 Certified Institution

Professional Electives:

AGILE SOFTWARE DEVELOPMENT			
Semester	II	CIE Marks	50
Course Code	23MCPE5261	SEE Marks	50
Teaching Hours/Week (L:T:P)	3:0:0	Exam Hrs	03
Total Hours	42	Credits	03
Course Learning Objectives:			

This course is designed to

- 1. Know the underlying concepts in agile software engineering.
- 2. Apply the agile design principles for software development.
- 3. Examine the major agile frameworks used in the current scenario.
- 4. Evaluate the performance of a software application with a product backlog.
- 5. Justify the various testing strategies for an agile software application.

5. Justify the various testing stategies for an agree software apprearion.			
Module 1 : Introduction and Project Planning	No. of Hrs: 08		
Introduction: Need of agile software development, Agile context-Manifesto, Princip	ples, Methods,		
Values, Roles, Artifacts, Stakeholders and Challenges- Business benefits of software agili	ty.		
Project Planning: Recognizing the structure of an agile team-Programmers, Managers, C	ustomers, User		
Stories-Definition, Characteristics and Content.			
Module 2: Agile Project Design	No. of Hrs: 08		
Fundamentals Design Principles: Single Responsibility Approach, Open-closed principles	nciple, Liskov		
substitution method, Dependency – Inversion principle, Interface – Segregation.			
Module 3: Common Agile Techniques	No. of Hrs: 09		
Stories and backlog refinement: Agile estimation, Agile Planning, Agile testing. Agile frameworks:			
Major agile frameworks- Extreme programming (XP), Kanban, Feature-driven deve	elopment, Lean		
Software Development.			
Scrum Framework: Introduction to Scrum, Scrum Framework - Overview, Scrum Roles,	Product Owner,		
Scrum Master, Development Team, Scrum Activities and Artifacts, Product Backlog,	Sprints, Sprint		
Planning, Sprint Execution, Daily Scrum, Done, Sprint Review, Sprint Retrospective.			
Module 4 : Product Backlog	No. of Hrs: 09		
Product Backlog Items, Good Product Backlog Characteristics- Detailed Appropria	tely, Emergent,		
Estimated, Prioritized. Grooming- What is Grooming, Who Does the Grooming, When I	Does Grooming		
Take place? Definition of Ready. Estimation and Velocity – What and when we Estimate – Portfolio			
Backlog Item Estimates, Product Backlog Estimates, Task Estimates. PBI Estimation Concepts, PBI			
Estimation Units, Planning Poker, What is velocity, Calculate a Velocity Range, Forecasting Velocity,			
Affecting Velocity, and Misusing Velocity.			

(A Unit of Rajalaxmi Education Trust[®], Mangalore) Autonomous Institute affiliated to VTU, Belagavi, Approved by AICTE, New Delhi Accredited by NAAC with A+ Grade & ISO 9001:2015 Certified Institution

Module 5 : Testing

No. of Hrs: 08

The Agile lifecycle and its impact on testing, Test driven development: Acceptance tests and verifying stories, writing a user acceptance test, Developing effective test suites, Continuous integration, Code refactoring. Risk based testing, Regression tests, Test automation.

Course Outcomes:

At the end of the course, the student will be able to:

- **CO1:** Recognize the importance of agile software development.
- **CO2:** Compare traditional software development and agile software development with its advantages and disadvantages.
- CO3: Apply agile design principles on a software application and measure its performance.

CO4: Investigate the importance of the Scrum framework while designing agile software applications. **CO5:** Evaluate the need for an agile life cycle model and its impact on software testing.

TEXT BOOKS

- 1. Mark Merkow, Secure Resilient and Agile Software Development, (1st ed), CRC Press, 2023.
- 2. Ken Schawber, Mike Beedle, *Agile Software Development with Scrum*, (International ed), Pearson, 2002.
- 3. Peter Measey, *Agile Foundations: Principles, Practices and frameworks*, (Reprint), BCS Learning & Development Limited, 2015.
- 4. Kenneth S. Rubin, *Essential Scrum*, *The Addison Wesley Signature Series*, (1st ed), Addison-Wesley and Pearson, 2012.
- 5. Robert C. Martin, *Agile Software Development, Principles, Patterns and Practices*, (1st ed), Prentice Hall, 2012

REFERENCE BOOKS

- 1. Lisa Crispin, Janet Gregory, *Agile Testing: A Practical Guide for Testers and Agile Teams* (International ed), Addison Wesley, 2009.
- 2. Alistair Cockburn, *Agile Software Development: The Cooperative Game*, (2nd ed) Addison-Wesley, 2006.
- 3. Mike Cohn, User Stories Applied: For Agile Software, (1st ed), Addison-Wesley, 2004.

- 1. <u>https://clearbridgemobile.com/complete-guide-agile-software development/</u>
- 2. https://www.edx.org/course/agile-software-development/
- 3. <u>https://www.coursera.org/learn/agile-software-development/</u>

PRINCIPLES OF MA	NAGEMENT AND O	RGANISATIO	NAL BEHAVIOR
Semester	II	CIE Marks	50
Course Code	23MCPE5262	SEE Marks	50
Teaching Hours/Week (L:T:P)	3:0:0	Exam Hrs	03
Total Hours	42	Credits	03
Course Learning Objectives:			
This course is designed to			
1. Understand theories and mod	lels of Management and	Organisational l	Behavior.
2. Familiarize students with cer	tain techniques of self-a	wareness.	
3. Compile an adept framework	t for solving the problem	is at the workpla	ce.
4. Acquaint the students with ir	ndustry relevant skill sets	5.	
Mod	ule 1 : Introduction		No. of Hrs: 08
Introduction: Meaning, Importan	nce, Differences between	n Administration	n and Management, Levels of
Management, Types of Managers	, Managerial roles skill	s and competen	cies, Fayol's 14 principles of
management, Recent trends in man	nagement.		
Lab component/Activity(s): Und	ertake any skill develop	nent online cour	rses on basics of Management.
Module 2:	Functions of Managem	ent	No. of Hrs: 09
Planning: Process, Types of Plans	, Steps in planning, Plan	ning tools and tee	chniques. Essentials of a good
plan			
Organising: Meaning, Types of	Organisation structures,	Span of contro	l, Directions in organisation
structures, centralisation and decen	ntralization of authority.		
Leading: Meaning, Traits and B	Sehaviour, Contingency	approaches to	Leadership, Transformational
leadership. Controlling: Meaning,	, Importance, Steps in th	e control process	s, Resistance to control, Types
of Control, Control techniques			
Lab component/Activity(s): Con-	duct an event in the depa	artment and try t	o understand the various roles
played by students in relation to Te	eam and Organisational	environment.	
Module 3:	Organisational Behav	ior	No. of Hrs: 09
Organisational Behavior: Meani	ng, Approaches to orga	nisational behav	ior, models of Organisational
behavior.			
Behavioural Dynamics: MARS	Model of individual be	havior and perfe	ormance, Types of Individual
behavior, Personality in Organisat	tion, Values: Values at	the workplace,	Types of values, Perception :
Meaning, Model of Perceptual pro	cess. Factors influencin	g perception, Pe	rception and decision making.
Emotions : Types of emotions, C	ircumflex Model of Em	otion, Stress an	d its management Attitudes:
Meaning, Types. Attitudes and beh	navior, changing attitude	s.	-
Lab component/Activity(s): Devo	elop questions, and try to	o observe person	ality traits of the self.
Mod	lule 4 : Personality	*	No. of Hrs: 08
Personality: Definition, factors	influencing personality	, Big Five per	sonality traits, Myers-Briggs
personality Indicator (MBTI), Pers	sonality tools and tests, I	Motivation: Def	inition, Process of motivation,
Cycle of motivation, Types, theori	es – Maslow's Hierarch	y of needs, Four	drive theory of motivation.

(A Unit of Rajalaxmi Education Trust[®], Mangalore) Autonomous Institute affiliated to VTU, Belagavi, Approved by AICTE, New Delhi Accredited by NAAC with A+ Grade & ISO 9001:2015 Certified Institution

Lab component/Activity(s): Conduct self introspection by applying four drive theories of motivation. **Module 5: Group Dynamics** No. of Hrs: 08 Group Dynamics: Meaning, Group characteristics, Classification of groups, Models of group development, meaning of group dynamics Teams: Meaning, Team characteristics, Teams v/s groups, Model of Team Effectiveness, Stages of Team Development. Creating effective teams. Lab component/Activity(s): Identify a team and analyze the various stages of development. **Course Outcomes:** At the end of the course, the student will be able to: **CO1:** Recognize the different theories in the field of Management. **CO2:** Discuss management and behavioral models related to values, perceptions, emotions and attitudes to solve business problems. CO3: Use the recent concepts in understanding personality and motivation towards effective team building. **TEXT BOOKS** 1. Chandrani Singh and Aditi Khatri, Principles and Practices of Management and Organizational *Behavior*, (1st ed)SAGE publication, 2016. 2. Koontz, Essentials of Management, (8th ed), McGraw Hill, 2014. **REFERENCE BOOKS** 1. Stephen P Robins, Timothy, Organizational Behavior (14th ed), Pearson, 2012. 2. Chuck Williams & Manas Ranjan Tripathy, MGMT: A South-Asian Perspective (5th ed), Cengage Learning, 2013. 3. Fred Luthans, Organizational Behavior, (12th ed), McGraw Hill International, 2011. 4. John R. Schermerhorn, *Management*, (8th ed), Wiley India, 2010. 5. Ramesh B Rudani, Principles of Management, Tata McGraw-Hill, 2013. **WEB LINKS:** 1. https://onlinecourses.nptel.ac.in/noc22 mg104/preview

2. <u>https://onlinecourses.nptel.ac.in/noc22_mg78/preview</u>

СКУРТО	GRAPHY AND NETWORK S	SECURITY	
Semester	II	CIE Marks	50
Course Code	23MCPE5263	SEE Marks	50
Teaching Hours/Week (L:T:P)	3:0:0	Exam Hrs	03
Total Hours	42	Credits	03
Course Learning Objectives:			
This course is designed to	• <i>,</i>		
1. Learn the basics of network se	ecurity.		
2. Practice the different encrypti	on techniques.		
3. Gain knowledge on hash func	tions, MAC and their use in var	ious protocols of netw	ork security.
4. Illustrate the importance of di	gital signatures.		
Mod	ule 1: Introduction		No. of Hrs:08
Introduction: Computer Security C	oncepts, The OSI Security Arc	chitecture, Security A	Attacks, Security
Services, Security Mechanisms, A	Model for Network Security	v. Classical Encrypti	on Techniques:
Symmetric Cipher Model, Substitution	n Techniques, Transposition Te	chniques, Steganogra	phy.
Module 2: Block Cipher	rs and The Data Encryption S	tandard	No. of Hrs: 09
Block Ciphers and The Data Enc	ryption Standard: Block Cip	her Principles, The l	Data Encryption
Standard (DES), The Strength of DE	S, Block Cipher Design Principl	les. Block Cipher Ope	eration: Multiple
Encryption and Triple DES, Electron	ic Codebook Mode, Cipher Blo	ock Chaining Mode, O	Cipher Feedback
Mode, Output Feedback Mode, Coun	ter Mode. Stream Ciphers: Strea	am Ciphers, RC4.	
Modul	e 3: Number Theory		No. of Hrs: 09
Number Theory: Divisibility and the	Division Algorithm, The Eucli	dean Algorithm, Mod	lular Arithmetic,
Prime Numbers, Fermat's and Euler	's Theorems, Testing for Prima	ality. Public-Key Cry	ptography, RSA
And Other Public-Key Cryptosyster	ns: Principles of Public-Key (Cryptosystems, The I	RSA Algorithm,
Diffie-Hellman Key Exchange.	-		-
Module 4: Cr	ptographic Hash Functions		No. of Hrs: 08
Cryptographic Hash Functions:	Applications of Cryptographic	Hash Function, Tw	o Simple Hash
Functions, Requirements and Securi	ty, Hash Functions Based on (Cipher Block Chainir	ng, Secure Hash
Algorithm (SHA). Message Auther	ntication Codes: Message Au	thentication Require	nents, Message
Authentication Functions, Message A	uthentication Codes, MACs Ba	sed on Hash Function	s (HMAC).
Modul	e 5: Digital Signature		No. of Hrs: 08
Digital Signatures: Digital Signatu	res, Schnorr Digital Signature	Scheme, Digital Sig	nature Standard
(DSS). Key Management And Distr	ibution: Symmetric Key Distri	bution Using Symme	etric Encryption,
Distribution of Public Keys, X.509 C	ertificates, Public Key Infrastru	cture.	• •
Course Outcomes:			
At the end of the course, the student y	vill be able to:		
CO1: Define classical encrypt	tion techniques and block cipher	s in today's network	scenarios.
CO2: Explain the broad steps	in the data encryption standard	with its benefits.	
CO3: Illustrate the differen	t public-key cryptography sc	chemes, RSA and	other public-key

(A Unit of Rajalaxmi Education Trust[®], Mangalore) Autonomous Institute affiliated to VTU, Belagavi, Approved by AICTE, New Delhi Accredited by NAAC with A+ Grade & ISO 9001:2015 Certified Institution

cryptosystems.

CO4: Examine key management and distribution schemes and design user authentication, such as Diffie-Hellman Key Exchange.

TEXT BOOKS

1. William Stallings, *Cryptography And Network Security - Principles And Practice*, (5th ed), Pearson/PHI, 2011.

REFERENCE BOOKS

- 1. William Stallings, *Network Security Essentials (Applications and Standards)*, (4th ed), Pearson Education, 2012.
- 2. Charlie Kaufman, Radia Perlman and Mike Speciner, *Network Security Private Communication in a Public World*, (2nd ed), Pearson/PHI, 2002.
- 3. Eric Maiwald, Fundamentals of Network Security, (1st ed), Dreamtech Press, 2003.
- 4. Whitman, *Principles of Information Security*, (3rd ed), Thomson, 2009.

- 1. <u>https://www.youtube.com/watch?v=JoeiLuFNBc4</u>
- 2. <u>https://onlinecourses.nptel.ac.in/noc21_cs16/preview</u>
- 3. <u>https://www.udemy.com/course/du-cryptography/</u>
- 4. <u>https://www.coursera.org/learn/crypto</u>

(A Unit of Rajalaxmi Education Trust[®], Mangalore) Autonomous Institute affiliated to VTU, Belagavi, Approved by AICTE, New Delhi Accredited by NAAC with A+ Grade & ISO 9001:2015 Certified Institution

COM	MPUTER GRAPHICS W	ITH OPENGL	
Semester	II	CIE Marks	50
Course Code	23MCPE5264	SEE Marks	50
Teaching Hours/Week (L:T:P)	3:0:0	Exam Hrs	03
Total Hours	42	Credits	03
Course Learning Objectives:			·

This course is designed to

- 1. Enumerate the key concepts of graphics output primitives and attributes with OpenGL.
- 2. Describe the algorithms and theories that form the basis of computer graphics.
- 3. Demonstrate the production of 2D and 3D transformations.
- 4. Apply concepts of clipping and visible surface detection in 2D and 3D viewing, Illumination Models.
- 5. Create curves and computer-animated images using OpenGL.
- 6. Decide suitable hardware and software for developing graphics packages using OpenGL.

Module 1: Graphics Output Primitives and Attributes	No. of Hrs: 08
Introduction to OpenGL, Coordinate reference frames, Specifying two dimensional w	orld coordinate
reference frame in OpenGL, OpenGL point functions, OpenGL line functions, Line draw	ing algorithms,
Circle generation algorithms, Ellipse generation algorithms, Fill area primitives, Polygon fill	l areas, OpenGL
polygon fill area functions, General scan line polygon fill algorithm, Fill methods for area	s with irregular
boundaries, OpenGL fill area attribute functions	
Module 2: Two – Dimensional and Three - Dimensional Geometric Transformations	No. of Hrs: 08
Basic two dimensional geometric transformations, Matrix representations and homogeneous	ous coordinates,

Inverse transformations, Two dimensional composite transformations, Other two dimensional transformations, Three dimensional Translation, Rotation, Scaling, Other three dimensional transformations, Affine transformations, OpenGL geometric transformation functions.

Module 3: Two Dimensional Viewing	ŗ
-----------------------------------	---

No. of Hrs: 08

The two dimensional viewing, Clipping window, Normalisation and viewport transformations, Clipping algorithms, Two dimensional point clipping, Two dimensional line clipping algorithms, Polygon fill area clipping, Curve clipping, Text clipping.

Module 4: Three Dimensional Viewing No. of Hrs: 09

The three dimensional viewing concepts, Three dimensional viewing pipeline, Three dimensional viewing coordinate parameters, Transformation from world to viewing coordinates, Projection transformations, Orthogonal projections, Oblique parallel projections, Perspective projections, The viewport transformation and three dimensional screen coordinates.

Module 5: Curves and Computer Animation	No. of Hrs: 09
Bezier spline curves, Raster methods for computer animation, Design of animation sequen	ces, Traditional

(A Unit of Rajalaxmi Education Trust[®], Mangalore) Autonomous Institute affiliated to VTU, Belagavi, Approved by AICTE, New Delhi Accredited by NAAC with A+ Grade & ISO 9001:2015 Certified Institution

Course Outcomes:

At the end of the course, the student will be able to:

- **CO1:** Describe the key concepts of output primitives and attributes with OpenGL.
- **CO2:** Discuss the steps involved in creating graphics objects using geometric transformations and their applications.

CO3: Illustrate scene generation using different clipping methods with their transformation.

CO4: Investigate the different visible surface detection techniques for display of 3D scenes.

TEXT BOOKS

1. Donald Hearn, M.Pauline Baker, *Computer Graphics with OpenGL*, (3rd ed), Indian Edition, Pearson, 2004.

REFERENCE BOOKS

- 1. Edward Angel, *Interactive Computer Graphics* A top down approach using OpenGL, (6th ed), Pearson, 2011.
- 2. Peter Shirley, Steve Marschner, *Fundamentals of Computer Graphics*, (3rd ed), Cengage Learning Indian edition, 2009.

- 1. https://www.coursera.org/learn/interactive-computer-graphics
- 2. https://onlinecourses.nptel.ac.in/noc21_cs97/preview
- 3. <u>https://www.edx.org/learn/computer-graphics/the-university-of-california-san-diego-computer-graphics</u>

(A Unit of Rajalaxmi Education Trust[®], Mangalore) Autonomous Institute affiliated to VTU, Belagavi, Approved by AICTE, New Delhi Accredited by NAAC with A+ Grade & ISO 9001:2015 Certified Institution

	MINI-PROJEC	Т	
Semester	II	CIE Marks	50
Course Code	23MCSE527	SEE Marks	50
Teaching Hours/Week (L:T:P)	0:0:2	Exam Hrs	2.5
Total Hours	26	Credits	02

Course Learning Objectives:

This course is designed to

- 1. Recall the concepts learnt in database management system courses.
- 2. Apply the required tools and techniques for software development.
- 3. Examine the requirements and transform them to a software module.
- 4. Assess the valid arguments in case study against the software module developed.
- 5. Formulate the test cases and strategies for the software module developed.

The Mini Project is based on implementation of concepts and theory learnt in programming languages and DBMS. The sample project titles are listed as follows.

- 1. Barcode Generation
- 2. Bank software with ATM
- 3. Load shedding in mobile systems
- 4. Document security system
- 5. Project planning and management
- 6. Library members information system
- 7. College Enrolment system
- 8. Resilient online coverage for surveillance applications
- 9. Employee information and payroll system
- 10. Any other application or system

Guidelines:

- Project must be done individually.
- Final evaluation will be done through project demonstration.
- The marks of the mini project would be given on the basis of performance in CIE and SEE.

Evaluation:

During project work, the evaluation process will be divided into a number of phases to assess the continuous progress (Minimum three phases).

- The project guides and project coordinator follows rubrics, which is set by the Department for evaluation and then submitted to the head of department.
- Each internal guide will verify the statement of project and literature of works and implementation details. The department will encourage students to make publications in standard conferences/journals.

(A Unit of Rajalaxmi Education Trust[®], Mangalore) Autonomous Institute affiliated to VTU, Belagavi, Approved by AICTE, New Delhi Accredited by NAAC with A+ Grade & ISO 9001:2015 Certified Institution

Review #	Agenda	Assessment	Review Assessment Weightage	Overall Weightage	
Review 1	Project Synopsis Evaluation	Rubrics 1	25		
Review 2	Mid-Term Project Evaluation	Rubrics 2	25	25 (Avg of R1, R2, R3)	
Review 3	Final Internal Project Evaluation	Rubrics 3	25		
Final Project Viva-Voce	End-Semester Project 25 Evaluation		25		
Total				50	

- <u>https://www.youtube.com/watch?v=-GwBNwZOPUs</u>
- <u>https://www.youtube.com/watch?v=9PgZCJNzY9M</u>