

MANGALORE INSTITUTE OF TECHNOLOGY & ENGINEERING

(A Unit of Rajalaxmi Education Trust®, Mangalore)
Autonomous Institute affiliated to VTU, Belagavi, Approved by AICTE, New Delhi Accredited by NAAC with A+ Grade & ISO 9001:2015 Certified Institution

Model Question Paper

Fourth Semester BE Degree Examination

Fluid Mechanics-Hydraulics and Pneumatics

Time: 3 Hours Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.
2. M: Marks, L: RBT (Revised Bloom's Taxonomy) level, C: Course outcomes.

		Module -1	M	L	C			
Q1	a.	Describe specific weight, mass density, specific volume, specific gravity and	10	L1	CO1			
		dynamic viscosity						
	b.	Explain with a neat sketch Continuity Equation	10	L1	CO1			
OR								
Q2	a.	State Paskal's law and describe the Force-Area, Force Distance and Area-	10	L1	CO1			
		Distance relationships.						
	b.	Describe with a neat sketch, the absolute, gauge, atmospheric and vacuum pressures	10	L1	CO1			
	1	Module- 2						
Q3	a.	A Gear Pump has a 80 mm outside diameter, a 55 inside diameter, and a 25 mm	10	L3	CO2			
		width. If the actual pump flows at 1600 rpm and the rated pressure is 95×10^{-3}						
		m ³ /min. Calculate volumetric efficiency. Give 4 advantages and disadvantages						
		of Gear Pump.						
	b.	A hydraulic pump has a displacement volume of 0.00012 m ³ /rev. Its actual flow	10	L3	CO2			
		rate is 0.0015 m ³ /s at 900 rpm and 75 bar. If the actual torque input by the prime						
		mover to the pump is 150 Nm, determine the overall efficiency of the pump. Also,						
		find the theoretical torque input to the pump for its operation. Represent graphical						
		symbols of unidirectional fixed displacement and bidirectional variable						
		displacement pumps.						
OR								
	a.	A Vane Pump has a rotor diameter of 50 mm, a cam ring diameter of 80 mm, and	10	L3	CO2			
Q4		the vane's width of 40 mm. Compute the volumetric displacement and theoretical discharge for an eccentricity of 10 mm and speed of 600 rpm. State types of Vane						
		Pump						
	b.	An Axial Flow Piston Pump delivers 0.04 m ³ /min at 3000 rpm. The pump has 9	10	L3	CO2			
		pistons of 12.5 mm diameter arranged on a 125 mm cylinder block. Determine the	10		002			
		theoretical discharge and offset angle if the volumetric efficiency is 95 %.						
		Module - 3						
	a.	Analyze a hydraulic system's operating conditions to determine the Overall	10	L4	CO3			
		efficiency and Actual power delivered by the motor. The hydraulic system uses a						
Q5		motor with a displacement of 165×10^{-6} m ³ and operates with a pressure of 70×10^{5}						
		N/m ² at a speed of 2000 rpm. If the actual flow rate consumed by the motor is						
		0.006 m ³ /s and the actual torque delivered by the motor is 170 N-m:						
		i. Using given displacement, determine the Overall efficiency						
		ii. Calculate the Actual power delivered by the motor						

23MTPC211

	b.	In a hydraulic system, a double-acting	g cylinder is used to extend and retract a	10	L4	CO3		
		piston, which is used to open and clos	e a furnace door. The cylinder has a bore					
	diameter of 50 mm and a rod diameter of 20 mm. If the extension force is 60 KN,							
		the retraction force is 6 KN and the o	oil flow rate to the actuator is 0.002 m ³ /s,					
		critically analyze the pressure, velocity	and power during extension and retraction					
OR								
a. A hydrostatic transmission operating at 105 bar pressure has the following 10								
		characteristics:						
		Pump Moto	or					
		$V_d = 100 \times 10^{-6} \text{ m}^3$ $V_d =$						
		$\eta_{v}=85\%$ $\eta_{v}=9$						
		$\eta_{\rm m} = 90 \%$ $\eta_{\rm m} = 90 \%$						
0.6			00 rpm					
Q6		1 *	y the displacement and output torque of the					
	_	motor		1.0	Ŧ. 4	000		
	b.		rating of the components in a hydraulic	10	L4	CO3		
			Pa. The system contains a hydraulic motor					
			radius drum at 30 rpm to lift a weight of					
			s shown in the figure below. Determine the brake power if the motor efficiency is 100					
			ce and an actuator for a hydraulic system.					
			Module - 4					
	a.	T	s kept running continuously even under, no	10	L3	CO4		
	a.		ck loads, heating of oil and power loss.	10	LJ	COT		
			ntrol Valve as a solution to keep the pump					
Q7		on and reduce the power loss. Illustrate						
	b.		accelerate the venting of the actuator and	10	L3	CO4		
			alve and interpret its workings using its					
		constructional diagram.						
			OR					
	a.	A press with a 2-ton load would require	e an opposing force to avoid its fall on the	10	L3	CO4		
		shift of DCV. Provide a type of Pres	ssure Control Valve solution to keep the					
		actuator safe from fall. Interpret the v	workings of the suggested valve using its					
Q8		constructional diagram.						
	b.	<u> </u>	ol the opening and closing of the bus door.	10	L3	CO4		
			on of a DCV to indirectly control a DAC to					
		achieve the door operation.						
			Module – 5	10	T 4	007		
	a.		e circuit using 3/2 DCV with a relief valve	10	L4	CO5		
			1, rod area of 0.0045 m ² and the pump flow and calculate the cylinder speed and load-					
		carrying capacity for extending and reti						
	b.		from lower level conveyor to higher level	10	L4	CO5		
	υ.	conveyor using two Pneumatic cylinder		10	1.7+			
Q9		i. Lifting Cylinder A: lifts the produ	1 (1)					
		level						
		ii. Shifting Cylinder B: shifts the produ	uct from the platform to the					
		higher level conveyor						
		iii. Lifting Cylinder retracts						
		iv. Shifting Cylinder retracts	Cylinder A					
			OR					
OR .								

23MTPC211

010	a.	A windshield has to be fit on a car body by a Simultaneously acting 2 DAC. Build	10	L4	CO5
		a hydraulic circuit for achieving the task and explain its working in brief.			
Q10	b.	Build a circuit for sequential operation of A+, A-, B+, B- using Cascading Method	10	L4	CO5
		of signal elimination			

_****