

MANGALORE INSTITUTE OF TECHNOLOGY & ENGINEERING

(A Unit of Rajalaxmi Education Trust®, Mangalore)
Autonomous Institute affiliated to VTU, Belagavi, Approved by AICTE, New Delhi Accredited by NAAC with A+ Grade & ISO 9001:2015 Certified Institution

Model Question Paper

Fourth Semester BE Degree Examination

Introduction to AI and ML for Robotics

Time: 3 Hours Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. M: Marks, L: RBT (Revised Bloom's Taxonomy) level, C: Course outcomes.

Module -1				L	C				
Q1	a.	Explain the difference between breadth-first search and depth-first search	ch. 10	L3	CO1				
		Construct a seven-node binary tree using both methods.							
	b.	Using a real-world case study, illustrate how AI enhances the functionality of	a 10	L3	CO1				
		robot.							
OR									
Q2	a.	Construct a binary tree and illustrate depth limiting search strategy. Explain t	he 10	L3	CO1				
		role of diameter on the efficiency of the search.							
	b.	Considering the airline travel problem, illustrate the implementation of problem	n- 10	L3	CO1				
		solving methodology.							
		Module- 2	l l						
	a.	Illustrate four iterations of iterative deepening search using a binary tree wi	ith 10	L3	CO2				
		depth varying from 0 to 3.							
-	b.	The table below shows straight-line distances to Bucharest. Show the progress	of 10	L3	CO2				
		greedy best-first search and find a path from Arad to Bucharest.							
		Arad 366 Mehadia 241							
		Bucharest 0 Neamt 234							
Q3		Craiova 160 Oradea 380							
		Drobeta 242 Pitesti 100							
		Eforie 161 Rimnicu Vilcea 193							
		Fagaras 176 Sibiu 253							
		Giurgiu 77 Timisoara 329							
		Hirsova 151 Urziceni 80							
		Iasi 226 Vaslui 199							
		Lugoj 244 Zerind 374							
OR									

23MTPC210

		2310	LII	$\mathbf{C}\mathbf{Z}$	LU
	a.	Consider the problem statement: "Place 8 queens shown on the board such that no	10	L3	CO2
		queen can attack another." Illustrate how hill climb algorithm can be applied to			
		solve the problem statement.			
		solve the problem statement.			
		4177			
0.4					
Q4					
		3377			
	b.	Explain how the 8-puzzle problem can be solved using A* algorithm.	10	L3	CO2
	0.	Module - 3	1.0		
	a.	Write a function newlist that takes one argument and returns it as a list, if the	10	L3	CO3
	и.	argument is already a list, including the empty list, newlist returns it without	10		003
Q5		change. If the argument is an atom, it returns it as a list.			
`	0	Write a LISP function to convert Fahrenheit to centigrade.	10	L3	CO3
	c.		10	LJ	COS
		OR	1	ı	
	a.	Write a PROLOG program that answers questions about family members and	10	L3	CO3
		relationships. Include predicates and rules that define sister, brother, father,			
		mother, grandchild, grandfather, and uncle. The program should be able to answer			
Q6		queries such as			
		the following:			
Qυ		father(X, bob).			
		grandson(X, Y).			
		uncle(bill, sue).			
		mother(mary, X).			
	b.	Write a LISP function to convert meters per second to kilometers per hour.	10	L3	CO3
L.		Module - 4	•		
	a.	Implement an inference engine that uses forward chaining to decide the best	10	L3	CO4
		action for a robotic arm sorting objects based on color and weight. Explain how			
0.7		the engine will process the rules and data.			
Q7	b.	Design an expert system for a robotic assembly line that can diagnose and resolve	10	L3	CO4
		common mechanical failures. How will the system prioritize potential faults and			
		suggest corrective actions?			
		OR		I	
	a.	Design a knowledge base for a robotic vacuum cleaner that includes rules for	10	L3	CO4
		navigating different types of flooring and avoiding obstacles. How would you			
00		structure the data and rules to optimize decision-making?			
Q8	b.	Create a set of rules for a drone's expert system to determine its path when	10	L3	CO4
		delivering a package, considering factors like weather, no-fly zones, and battery			
		levels. Demonstrate how these rules are applied in a hypothetical scenario.			
	I <u></u>	Module - 5	1	Ĭ	
	a.	Apply Q-learning to a robotic path-planning problem where a drone must	10	L3	CO5
Q9		navigate from a start point to a target while avoiding obstacles. Show the learning			
		process through a sample reward table.			
	b.	Develop a CNN-based system for a robot to classify different objects in its	10	L3	CO5
		1	1	<u> </u>	

23MTPC210

		environment.					
	OR						
Q10	a.	Explain how reinforcement learning can be applied to a robotic manipulator.	10	L3	CO5		
	b.	Design an RNN model for a humanoid robot to predict and respond to human	10.	L3	CO5		
		gestures in a sequence of interactions.					

_****