

1ANGALORE INSTITUTE OF TECHNOLOGY & ENGINEERING

(A Unit of Rajalaxmi Education Trust®, Mangalore)
Autonomous Institute affiliated to VTU, Belagavi, Approved by AICTE, New Delhi Accredited by NAAC with A+ Grade & ISO 9001:2015 Certified Institution

Model Question Paper Fourth Semester MCA Degree Examination, 2024-25 Blockchain Technology

Time: 3 Hours Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.
2. M: Marks, L: RBT (Revised Bloom's Taxonomy) level, C: Course outcomes.

		Module -1	M	L	C				
Q1	a.	A logistics company wants to share shipment tracking data among multiple partners without relying on a central server. Make use of the blockchain architecture and explain how to implement and ensure trust.	10	L3	CO1				
	b.	You are tasked with simulating a simple blockchain using Python for an educational demo. Apply the core elements (such as blocks, hashes, nonce, previous hash, and transactions) and show how to implement the simulation to mimic a real blockchain.	10	L3	CO1				
OR									
02	a.	A company faces frequent downtime due to a single server failure. Apply the distributed nature of blockchain and explain how we can help in achieving higher system availability and fault tolerance in this scenario.	10	L3	CO1				
Q2	b.	A cryptocurrency exchange wants to store transaction records in a way that ensures both transparency and security. Make use of blockchain architecture illustrate how it supports these requirements. How can it be applied here in this context?	10	L3	CO1				
		Module- 2							
02	a.	A green-energy startup wants a blockchain validation method that minimizes power usage while providing security. Apply consensus mechanisms and recommend the most suitable one, explaining why it aligns with the company's environmental goals.	10	L3	CO2				
Q3	b.	A blockchain project notices that three mining pools control over 50% of its hash power. Make use of Nakamoto Coefficient and discuss how one can assess this centralization risk. Suggest strategies to improve decentralization.	10	L3	CO2				
		OR	l						
	a.	An NFT marketplace wants to ensure validator rewards are fairly distributed to avoid concentration of power. Apply tokenomics and explain how it can be designed to support this scenario.	10	L3	CO2				
Q4	b.	A DeFi project wants to compare its decentralization level with competing platforms. Make use of any quantifiable metrics and discuss how it can be used in this context. How can you measure this?	10	L3	CO2				
		Module - 3	•						
Q5	a.	X wants to confirm the authenticity of the BTC he received from Y. Apply the blockchain property that enables him to do this without a central authority. Write a brief on the same.	10	L3	CO3				
Q3	b.	A payment processor needs to prevent double spending on its Bitcoin transactions. Apply Bitcoin's network design and consensus to prevent this problem. Discuss on how this can be achieved.	10	L3	CO3				

23MCPE662

	OR									
Q6	a.	A cryptocurrency exchange wants to store user BTC securely. Apply the key	10	13	CO3					
		management strategies that could be implemented to ensure maximum safety.	10	LJ	COS					
	b.	A business wants faster transaction confirmations than Bitcoin provides. Make use of	10	13	CO3					
		any alternative cryptocurrencies and write down their advantages.	10	LJ	COS					
Module - 4										
Q7	a.	A property sales company wants transactions to execute automatically once payment is								
		confirmed. Apply the smart contract and explain how it could be designed for this	10	L3	CO4					
		process.								
	b.	A decentralized application needs to send messages between contracts. Utilize								
		Ethereum transactions and message calls and illustrate how it can be structured to	10	L3	CO					
		handle this.								
OR										
	a.	A startup wants to lower gas costs for its users. Apply Ethereum scaling solutions for	10	13	CO4					
Q8		this scenario and write a brief on its working.	10							
Q ₀	b.	A developer wants to minimize gas costs while storing data. Make use of optimization	10	L3	COA					
		strategies for Ethereum smart contracts and explain how it can be minimized.	10	LJ	CO¬					
Module – 5										
	a.	A bank wants to automate repetitive compliance checks. Apply Robotic Process	10	13	CO5					
		Automation (RPA) combined with blockchain. How will you achieve this?	10	LJ						
Q9	b.	A fleet management system wants real-time vehicle tracking data to be validated.		L3	CO5					
		Apply IoT and blockchain technologies and illustrate how both these technologies can	10							
		be used to work together to achieve the given scenario.								
	OR									
Q10	a.	A retail company wants to avoid being locked into a single cloud provider. Utilize	10	1.3	CO5					
		blockchain-based cloud solutions and explain how to offer more flexibility.	10	13						
	b.	A HR system wants to verify employee credentials through cloud services. Apply	10	1.3	CO5					
		blockchain-based verification. Write down the working with a suitable example.	10	ديد						

_****