

MANGALORE INSTITUTE OF TECHNOLOGY & ENGINEERING

(A Unit of Rajalaxmi Education Trust®, Mangalore)
Autonomous Institute affiliated to VTU, Belagavi, Approved by AICTE, New Delhi
Accredited by NAAC with A+ Grade & ISO 9001:2015 Certified Institution

Model Question Paper

Fourth Semester MCA Degree Examination

Computer Vision

Time: 3 Hours Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.

2. M: Marks, L: RBT (Revised Bloom's Taxonomy) level, C: Course outcomes.

Module -1				L	C			
	a.	A 3D point P(2,3,5) is: Rotated 90° counterclockwise about the Z-axis. Translated by (+4,-2,+1). Projected onto the XY-plane using orthographic projection. Perform the transformations in sequence and calculate the final projected coordinates.	10	L3	CO1			
Q1	b.	A camera has radial lens distortion modeled by: $x_{corrected} = x(1+k_1r^2), y_{corrected} = y(1+k_1r^2)$ where $r^2 = x^2 + y^2$, $k_1 = 0.002$. If a pixel's normalized coordinates are (0.4,0.3), calculate the corrected coordinates after distortion correction.	10	L3	CO1			
		OR						
	a.	A periodic pattern has a spatial frequency of 8 cycles/mm. A camera sensor has a pixel pitch of 0.05 mm. Calculate the sampling frequency in cycles/mm. Determine if aliasing will occur using the Nyquist theorem. If aliasing occurs, calculate the aliased frequency.	10	L3	CO1			
Q2	b.	A Lambertian surface has an albedo ' $ ho=0.7$ and is illuminated by a directional light with intensity I=150 units. The angle between the surface normal and light direction is 45°. Using $I_r=\rho\cdot I\cdot\cos(\theta)$ calculate the reflected intensity from the surface	10	L3	CO1			
	Module 2							

23MCPE663

		<u> </u>	SIVIC	···	JUJ
	a.	An image has the following gray levels and their probabilities:			
Q3		Gray Level rk Probability p(rk) 0 0.10 1 0.20 2 0.40 3 0.30 Perform histogram equalization and find the new gray levels after transformation	. 10	L3	CO2
		Show all steps.			
	b.	A pixel in RGB format has values R=100, G=150, B=200. Convert it into grayscale intensity using the formula:			
		I=0.299R+0.587G+0.114B	10	L3	CO2
		Then, apply a contrast stretching transform to map the intensity range [50, 200] to [0, 255]. Show all calculations.			
	I .	OR			
	a.	Linear Filtering – Separable Filter Application . You are given a 3×3 image patch:			
		$\begin{bmatrix} 10 & 20 & 30 \\ 40 & 50 & 60 \\ 70 & 80 & 90 \end{bmatrix}$			
		and a separable filter defined as: Row filter: $\frac{1}{3}[1\ 1\ 1]$	10	L3	CO2
Q4		Column filter: $\frac{1}{3}[1 \ 1 \ 1]^T$			
		Perform the filtering operation step-by-step and compute the resulting central pixel value.			
	b.	A 1D signal $f(x) = [4,0,2,0]$ is given.			
		Compute its Discrete Fourier Transform (DFT). Apply an ideal low-pass filter that keeps only the lowest 2 frequency components and sets the rest to zero. Compute the inverse DFT to get the filtered signal.	10	L3	CO2
	l	Module – 3		<u>I</u>	
Q5	a.	Two feature points are detected in image A: $P_1(4, 7)$, $P_2(6, 5)$ and their possible matches in image B: $Q_1(5, 8)$, $Q_2(8, 6)$. Using Euclidean distance, calculate which point in image B matches best with each point in image A. Show all calculations.	10	L3	CO3
	b.	Given the following image patch (pixel intensities):			
			10	L3	CO3

23MCPE663

		23.1	MC	PEC	003
		$\begin{bmatrix} 100 & 102 & 104 \\ 98 & 100 & 102 \\ 96 & 98 & 100 \end{bmatrix}$ Apply the Sobel operator with $Gx = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$ and $G_y = \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix}$ to find the gradient magnitude at the center pixel.			
		-			
		OR			
	a.	In the Hough transform, a line is detected at parameters: ρ =10, θ =45° Write the equation of the line in the form y=mx+c. Show step-by-step derivation from Hough parameters to slope—intercept form.	10	L3	CO3
Q6	b.	Two lines in an image are given by: Line 1: $y=2x+3$ Line 2: $y=-x+9$ Find the vanishing point (intersection point) of these lines by solving the equations. Show all steps.	10	L3	CO3
		Module – 4	1		
	a.	Two-Frame Structure from Motion – Triangulation Two calibrated cameras observe the same 3D point. • Camera 1 center: C1=(0,0,0), focal length = 1.0 • Camera 2 center: C2=(1,0,0), focal length = 1.0 • Image coordinates in Camera 1: (u1,v1)=(0.2,0.3) • Image coordinates in Camera 2: (u2,v2)=(-0.1,0.25) Using triangulation, compute the 3D coordinates of the point. Show all steps	10	L3	CO4
Q7 -	b.	You are given the following measurement matrix W for 3D points across 2 frames (values are in pixels): $W = \begin{bmatrix} 1.0 & 2.0 & 3.0 \\ 1.5 & 2.5 & 3.5 \\ 0.5 & 1.0 & 1.5 \\ 0.7 & 1.2 & 1.7 \end{bmatrix}$ Using the Tomasi–Kanade factorization method, compute the rank-3 approximation of W (show SVD steps).	10	L3	CO4
<u> </u>		OR	I		
00	a.	Given two 1D image patches: Frame 1: [100,102,105,110] Frame 2: [102,105,110,115] Estimate the translation t between Frame 1 and Frame 2 by minimizing the sum of squared differences (SSD) for integer shifts.	10	L3	CO4
Q8	b.	An affine motion model is given by:			
		$egin{cases} x'=a_1x+a_2y+a_3\ y'=a_4x+a_5y+a_6 \end{cases}$	10	L3	CO4

23MCPE663

					231VIC	1 11	705
		From the following correspondences: Formulate the equations and solve for the	(3, 2) ne affine pa	x',y' (2, 4) (3, 3) (4, 5) arameters a1,a2,,a6.			
L			lule – 5				
Q9	a. Face Recognition – Eigenfaces Projection You are given an average face vector				10	L3	CO5
	b.	Two sets of matched feature points (before Image A: (10, 20), (15, 25), (20, 30) Image B: (12, 22), (17, 26), (22, 32) Using Euclidean distance, calculate the sets of points.	J	,	0 10	L3	CO5
'			OR		!		
	 a. A visual vocabulary of size 4 is used: {V₁, V₂, V₃, V₄}. A test image's local features are assigned to visual words in the order: V₂, V₂, V₁, V₄, V₂, V₃, V₁. Create the normalized histogram (each bin divided by total count). Show your calculation step-by-step. 				10	L3	CO5
Q10	b.	An object recognition algorithm is tested. The ground truth labels are: Cat, Dog, Dog, Cat, Bird The predicted labels are: Cat, Dog, Cat, Cat, Bird • Compute the recognition accuracy.			. 10	L3	CO5