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Module-5 

LINEAR TRANSFORMATIONS 

CONTENTS: 
 

• Definition and examples,  

• Matrix representations of a linear transformation.  

• Change of coordinates and change of basis,  

• Rank and nullity of a linear operator, 

• Rank-nullity theorem,  

• Eigenvalues and eigenvectors, 

• Diagonalization. 
 

LEARNING OBJECTIVES: 

• Understand and articulate the definition of a linear transformation and its properties. 

• Understand how matrices represent linear transformations and vice versa. 

• Apply the methods for changing coordinates and basis using transition matrices. 

• Apply the rank-nullity theorem to relate the dimensions of the domain, range, and kernel. 

• Able to find eigenvalues and corresponding eigenvectors for given matrices. 

• Diagonalize a given matrix by finding eigenvectors and constructing the diagonal matrix. 

Here are some major applications: 

1. Computer Science and Computer Graphics: 

 Computer Graphics: Matrices are used to represent transformations, such as rotation, translation, and 

scaling. Linear algebra is crucial for 3D graphics and animation. 

   Data Analysis: Techniques like Principal Component Analysis (PCA) use linear algebra for 

dimensionality reduction and feature extraction. 

 2. Physics: 

 Quantum Mechanics: Matrices and vectors are fundamental in representing quantum states and 

operations in quantum mechanics. 

   Mechanics and Dynamics: Linear algebra is used in the analysis of systems of linear equations 

representing physical systems. 
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3. Engineering: 

 Linear transformations are used in circuit analysis and signal processing. For example, Fourier 

transforms and Laplace transforms are linear transformations that are essential in analyzing and 

designing electrical circuits. 

4. Machine Learning and Data Science: 

 Regression Analysis: Linear regression is a common statistical method for predicting outcomes based 

on linear relationships between variables. 

 Neural Networks: The weights and biases in neural networks are often optimized using linear algebra 

operations. 

5. Economics and Finance: 

 Input-Output Models: Linear algebra is used to model and solve input-output systems, describing 

economic relationships. 

   Portfolio Optimization: Linear algebra is applied in optimizing investment portfolios. 

6. Statistics: 

  Multivariate Statistics: Covariance matrices, factor analysis, and multivariate regression rely on linear 

algebra concepts. 

   Markov Chains: Linear algebra is used to analyze and solve problems related to Markov processes. 

7. Cryptography: 

 Public Key Cryptography: Algorithms like RSA use linear algebraic structures, such as modular 

arithmetic with matrices, for secure communication. 

8. Biomedical Sciences: 

 Image Processing: Linear algebra is used in medical imaging for tasks like image reconstruction and 

feature extraction. 

   Population Modeling: Linear algebraic models are employed to analyze population dynamics in 

epidemiology. 

9. Operations Research: 

 Linear Programming: Optimization problems, common in operations research, are often solved using 

linear algebra techniques. 

10. Environmental Science: 

 Population Modeling: Linear algebra is used to model and analyze the growth and interaction of 

populations in ecological systems. 



   MANGALORE INSTITUTE OF TECHNOLOGY & ENGINEERING 
(A Unit of Rajalaxmi Education Trust®, Mangalore) 

Autonomous Institute affiliated to VTU, Belagavi, Approved by AICTE, New Delhi 

Accredited by NAAC with A+ Grade & ISO 9001:2015 Certified Institution 
 

   23BSCC102                                                                                                                                       Engineering Mathematics - I 

    

  These applications demonstrate the broad impact and importance of linear algebra in various scientific, 

engineering, and economic disciplines. Understanding linear algebra is foundational for tackling complex 

problems in these fields. 

DEFINITION  

  A mapping L from a vector space V into a vector space W, denoted by 𝐿: 𝑉 → 𝑊 , is said to be 

a linear transformation if it satisfies two properties for all vectors  𝑣1and 𝑣2 in the vector space V and all 

scalars c 

1.  Additivity: 𝑇(𝑣1 + 𝑣2) = 𝑇(𝑣1) + 𝑇(𝑣2) 

2. Scalar Multiplication:  𝑇(𝑐𝑣1) = 𝑐𝑇(𝑣1) 

 

Note: If 𝐿: 𝑉 → 𝑉 we will refer to a linear transformation 𝐿 as linear operator on 𝑉 

That is, Linear operator is a linear transformation from a vector space to itself. 

EXAMPLE OF A LINEAR TRANSFORMATION: 

1. Let 𝑳 be the operator defined by 𝑳(𝑿) = 𝟑𝑿 for each 𝑿 ∈ 𝑹𝟐 

It is a linear operator because 

i) 𝐿(𝑋 + 𝑌) = 3(𝑋 + 𝑌) = 3𝑋 + 3𝑌 = 𝐿(𝑋) + 𝐿(𝑌) 

ii) 𝐿(∝ 𝑋) = 3(∝ 𝑋) = (3 ∝)𝑋 = (∝ 3)𝑋  =∝ (3𝑋)  =∝ 𝐿(𝑋) 

 

In general, the linear operator 𝐿(𝑋) =∝ 𝑋 can be thought of as a stretching or shrinking by a factor of  ∝. 
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      2. Consider the mapping 𝑳 defined by 𝑳(𝑿) = 𝒙𝟏𝒆𝟏 for each 𝑿 ∈ 𝑹𝟐. Thus , if 𝑿 = [
𝒙𝟏

𝒙𝟐
], then 

𝑳(𝑿) = [
𝒙𝟏

𝟎
].   

      It is a Linear operator because for all 𝑋 = [
x1

x2
] and Y= [

𝑦1

𝑦2
], for all scalar ∝  and 𝛽, 

                                 𝐿(𝛼𝑋 + 𝛽𝑌) = 𝐿 ([
𝛼𝑥1 + 𝛽𝑦1

𝛼𝑥2 + 𝛽𝑦2
])=[

𝛼𝑥1 + 𝛽𝑦1

0
]=(𝛼𝑥1 + 𝛽𝑦1)𝑒1 

= 𝛼(𝑥1𝑒1) + 𝛽(𝑦1𝑒1) 

                                                                     =𝛼𝐿(𝑋) + 𝛽𝐿(𝑋) 

                                                       

We can think 𝐿 as a projection onto the 𝑥1-axis 

 

3.  Suppose transformation 𝑻: 𝑹𝟐 → 𝑹𝟐 defined as follows: 𝑻(𝒙, 𝒚) = (𝟐𝒙, −𝟑𝒚) verify that T is a 

linear transformation. 

 

1. Additivity: For any two vectors (𝑥1, 𝑦1) and (𝑥2, 𝑦2) in 𝑅2: 

𝑇((𝑥1, 𝑦1) +(𝑥2, 𝑦2))= 𝑇(𝑥1 +𝑥2, 𝑦1 + 𝑦2)=2(𝑥1 +𝑥2) − 3(𝑦1 + 𝑦2) 

 

𝑇(𝑥1, 𝑦1) +T(𝑥2, 𝑦2)=(2𝑥1, −3𝑦1) + (2𝑥2, −3𝑦2)= (2(𝑥1 +𝑥2), −3(𝑦1 + 𝑦2)) 

 

𝑇((𝑥1, 𝑦1) +(𝑥2, 𝑦2)) =  𝑇(𝑥1, 𝑦1) +T(𝑥2, 𝑦2) 

So the additivity property holds. 
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2. Scalar Multiplication: For any scalar 𝑐 and vector (𝑥, 𝑦) in 𝑅2: 

𝑇(𝑐(𝑥, 𝑦)) = 𝑇((𝑐𝑥, 𝑐𝑦)) = (2(𝑐𝑥), −3(𝑐𝑦)) 

𝑐𝑇(𝑥, 𝑦) = 𝑐(2𝑥, −3𝑦) = (2(𝑐𝑥), −3(𝑐𝑦)) 

∴   𝑇(𝑐(𝑥, 𝑦)) = 𝑐𝑇(𝑥, 𝑦) 

So the scalar multiplication property holds. 

 

                   MATRIX REPRESENTATIONS OF A LINEAR TRANSFORMATION: 

Let 𝐿 be a linear transformation from 𝑅𝑛 to 𝑅𝑚, there is matrix of order 𝑚 × 𝑛 such that  

𝐿(𝑋) = 𝐴𝑋 where   𝐴 = [

𝛼11 𝛼12 … 𝛼1𝑛

𝛼21 𝛼22 … 𝛼2𝑛

… … … …
𝛼𝑚1 𝛼𝑚2 … 𝛼𝑚𝑛

] for any 𝑋 ∈ 𝑅𝑛 and 𝐿(𝑒𝑖) = [

𝛼1𝑖

𝛼2𝑖

⋮
𝛼𝑚𝑖

] ,  i= 1,2,3, … , 𝑛 

Definition: If 𝑋 = 𝑥1𝑒1 + 𝑥2𝑒2 + ⋯ + 𝑥𝑛𝑒𝑛  is an arbitrary vector in 𝑅𝑛  𝐿(𝑋) = 𝑥1𝐿(𝑒1) + 𝑥2𝐿(𝑒2) +

⋯ + 𝑥𝑛𝐿(𝑒𝑛)  = (𝐿(𝑒1), 𝐿(𝑒2), … , 𝐿(𝑒𝑛)) [

𝑥1

𝑥2

⋮
𝑥𝑛

]    if 𝐿(𝑒𝑖) = [

𝛼1𝑖

𝛼2𝑖

⋮
𝛼𝑚𝑖

] then 𝐿(𝑋) = 𝐴𝑋. 

Example: 

1. 𝐿(𝑋) = 3𝑋 

 

Here 𝑋 = [
𝑥1

𝑥2
],     X= 𝑥1𝑒1 + 𝑥2𝑒2 

𝐿(𝑋) = 𝐿(𝑥1𝑒1 + 𝑥2𝑒2) = 𝑥1𝐿(𝑒1) + 𝑥2𝐿(𝑒2) 

And 𝐴𝑋 = (𝐿(𝑒1) 𝐿(𝑒2)) [
𝑥1

𝑥2
] = [

3 0
0 3

] [
𝑥1

𝑥2
] thus matrix representation of the given linear transformation 

is A=[
3 0
0 3

] 
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2. Let 𝐿(𝑋) = 𝑥1𝑒1 = [
𝑥1

0
] , 𝐿: 𝑅2 → 𝑅2 to find matrix representation A, 

𝐿(𝑒1) = [
1
0

] , 𝐿(𝑒2) = [
0
0

]   𝐴 = [
1 0
0 0

] 

 

3. Determine the matrix for transformation, projection onto 45. line 

 

𝐿 be the 45. line projection of 𝑒1=[
1
0

] , (𝑒2) = [
0
1

] onto 𝐿  is [

1

2
1

2

] the matrix 𝐴 = [

1

2

1

2
1

2

1

2

] 

 

PROBLEMS 

 

1. Find the matrix of linear transformation 𝑻: 𝑽𝟐(𝑹) → 𝑽𝟑(𝑹) defined by 𝑻(𝒙, 𝒚) = (𝒙 + 𝒚, 𝒙, 𝟑𝒙 − 𝒚) 

with respect to a standard basis. 

Solution: 

Let {𝑒1, 𝑒2}  and {𝑓1, 𝑓2, 𝑓3}   be the standard basis of 𝑉2(𝑅) and 𝑉3(𝑅) respectively. 

𝑒1 = (1,0), 𝑒2 = (0,1) 

𝑓1 = (1,0,0), 𝑓2 = (0,1,0), 𝑓3 = (0,0,1) 

Now, 

𝑇(𝑒1) = 𝑇(1,0) = (1,1,3) = 1. 𝑓1 + 1. 𝑓2 + 3. 𝑓3 

𝑇(𝑒2) = 𝑇(0,1) = (1,0, −1) = 1. 𝑓1 + 0. 𝑓2 − 1. 𝑓3 

∴   𝐴𝑇 = [
1 1
1 0
3 −1

]  
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2. If T is a mapping from 𝑽𝟐(𝑹) into 𝑽𝟐(𝑹) defined by 𝑻(𝒙, 𝒚) = (𝒙𝒄𝒐𝒔𝜽 − 𝒚𝒔𝒊𝒏𝜽, 𝒙𝒔𝒊𝒏𝜽 + 𝒚𝒄𝒐𝒔𝜽) 

Show that T is a linear transformation. 

Solution: 

Let ∝= (𝑥1, 𝑥2), 𝛽 = (𝑦1, 𝑦2) be two arbitrary elements of  𝑉2(𝑅). 

Consider 𝑇(∝ +𝛽) = 𝑇(𝑥1 + 𝑦1, 𝑥2 + 𝑦2) 

= [(𝑥1 + 𝑦1)𝑐𝑜𝑠𝜃 − (𝑥2 + 𝑦2)𝑠𝑖𝑛𝜃, (𝑥1 + 𝑦1)𝑠𝑖𝑛𝜃 + (𝑥2 + 𝑦2)𝑐𝑜𝑠𝜃] 

= [(𝑥1𝑐𝑜𝑠𝜃 − 𝑥2𝑠𝑖𝑛𝜃) + (𝑦1𝑐𝑜𝑠𝜃 − 𝑦2𝑠𝑖𝑛𝜃), (𝑥1𝑠𝑖𝑛𝜃 + 𝑥2𝑐𝑜𝑠𝜃) + (𝑦1𝑠𝑖𝑛𝜃 + 𝑦2𝑐𝑜𝑠𝜃)] 

= (𝑥1𝑐𝑜𝑠𝜃 − 𝑥2𝑠𝑖𝑛𝜃, 𝑥1𝑠𝑖𝑛𝜃 + 𝑥2𝑐𝑜𝑠𝜃) + (𝑦1𝑐𝑜𝑠𝜃 − 𝑦2𝑠𝑖𝑛𝜃, 𝑦1𝑠𝑖𝑛𝜃 + 𝑦2𝑐𝑜𝑠𝜃) 

= 𝑇(𝑥1, 𝑥2) + 𝑇(𝑦1, 𝑦2) 

= 𝑇(∝) + 𝑇(𝛽) 

Let 𝑐 ∈ 𝑅 be any scalar, 

Consider 

𝑇(𝑐. ∝) = 𝑇(𝑐𝑥1, 𝑐𝑥2) 

= (𝑐𝑥1𝑐𝑜𝑠𝜃 − 𝑐𝑥2𝑠𝑖𝑛𝜃, 𝑐𝑥1𝑠𝑖𝑛𝜃 + 𝑐𝑥2𝑐𝑜𝑠𝜃) 

= 𝑐(𝑥1𝑐𝑜𝑠𝜃 − 𝑥2𝑠𝑖𝑛𝜃, 𝑥1𝑠𝑖𝑛𝜃 + 𝑥2𝑐𝑜𝑠𝜃) 

= 𝑐𝑇(𝑥1, 𝑥2) = 𝑐𝑇(∝) 

Hence T is a linear transformation. 

 

 

PRACTICE PROBLEMS 

3.  If 𝑇: 𝑽𝟏(𝑹) → 𝑽𝟐(𝑹) is defined by 𝑻(𝒙) = (𝒙, 𝒙𝟐, 𝒙𝟑) Verify whether T is linear or not. 

4. If 𝑇: 𝟐(𝑹) → 𝑽𝟐(𝑹) defined by 𝑻(𝒙, 𝒚) = (𝟐𝒙 − 𝒚, 𝒙 + 𝟑𝒚) Verify whether T is linear or not. 

 

Some interesting transformation of 𝒙 ∈ ℝ𝟐 

i) 𝐼𝑥 = [
1 0
0 1

] [
𝑥1

𝑥2
] = [

𝑥1

𝑥2
] = 𝑥 

This is called identity transformation. 

Example:  

𝐼𝑥 = [
1 0
0 1

] [
2
3

] = [
2
3

] = 𝑥 

ii) 𝑅𝑥 = [
0 1
1 0

] [
𝑥1

𝑥2
] = [

𝑥2

𝑥1
] = 𝑦 

𝑅 = [
0 1
1 0

] is called a reflection. 
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Example: 

𝑅𝑥 = [
0 1
1 0

] [
2
3

] = [
3
2

] = 𝑦 

iii) 𝑅𝜃 = [
𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

]                                                                                   

𝑅𝜃𝑥 = [
𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

] [
𝑥1

𝑥2
] = [

𝑥1𝑐𝑜𝑠𝜃 − 𝑥2𝑠𝑖𝑛𝜃
𝑥1𝑠𝑖𝑛𝜃 + 𝑥2𝑐𝑜𝑠𝜃

] = 𝑦                           

𝑅𝜃: Rotates the vector by an angle 𝜃  counter clockwise direction. 

 

𝑅(−𝜃) = [
cos (−𝜃) −sin (−𝜃)

sin (−𝜃) cos (−𝜃)
] = [

𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃
−𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

] 

𝑅(−𝜃) is the inverse of 𝑅𝜃 

 

REMARK: A vector space has two operations defined on it, namely addition and scalar multiplication. 

Linear transformations between vector spaces are those transformations that preserve these linear structures 

in the following sense. 

DEFINITION Let 𝑼 and 𝑽 be vector spaces. Let 𝐮 and 𝐯 be vectors in 𝑼 and let 𝒄 be a scalar. A 

transformation 𝑻: 𝑼 → 𝑽 is said to be linear if 

𝑻(𝐮 + 𝐯) = 𝑻(𝐮) + 𝑻(𝐯)

𝑻(𝒄𝐮) = 𝒄𝑻(𝐮)
 

The first condition implies that 𝑇 maps the sum of two vectors into the sum of the images of those 

vectors. The second condition implies that 𝑇 maps the scalar multiple of a vector into the same scalar 

multiple of the image of that vector. Thus, the operations of addition and scalar multiplication are preserved 

under a linear transformation. We remind the reader of how to use the definition to check for linearity 

between two 𝐑𝑛-type vector spaces with the following example. This leads to a discussion of more general 

vector spaces. 

EXAMPLE 1 Prove that the following transformation 𝑇: 𝐑2 → 𝐑2 is linear. 

𝑇(𝑥, 𝑦) = (2𝑥, 𝑥 + 𝑦) 
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SOLUTION 

We first show that 𝑇 preserves addition. Let (𝑥1, 𝑦1) and (𝑥2, 𝑦2) be elements of 𝐑2. Then 

𝑇((𝑥1, 𝑦1) + (𝑥2, 𝑦2)) = 𝑇(𝑥1 + 𝑥2, 𝑦1 + 𝑦2)          by vector addition 

 = (2𝑥1 + 2𝑥2, 𝑥1 + 𝑥2 + 𝑦1 + 𝑦2)         by definition of 𝑇

 = (2𝑥1, 𝑥1 + 𝑦1) + (2𝑥2, 𝑥2 + 𝑦2)         by vector addition 

 = 𝑇(𝑥1, 𝑦1) + 𝑇(𝑥2, 𝑦2)          by definition of 𝑇

 

Thus 𝑇 preserves vector addition. 

We now show that 𝑇 preserves scalar multiplication. Let 𝑐 be a scalar. 

𝑇(𝑐(𝑥1, 𝑦1)) = 𝑇(𝑐𝑥1, 𝑐𝑦1)          by scalar multiplication of a vector 

 = (2𝑐𝑥1, 𝑐𝑥1 + 𝑐𝑦1)         by definition of 𝑇

 = 𝑐(2𝑥1, 𝑥1 + 𝑦1)          by scalar multiplication of a vector 

 = 𝑐𝑇(𝑥1, 𝑦1)          by definition of 𝑇

 

Thus 𝑇 preserves scalar multiplication. 𝑇 is linear. 

The following example illustrates a linear transformation between function vector spaces. 

EXAMPLE 2 Let 𝑃𝑛 be the vector space of real polynomial functions of degree ≤ 𝑛. 

Show that the following transformation 𝑇: 𝑃2 → 𝑃1 is linear. 

𝑇(𝑎𝑥2 + 𝑏𝑥 + 𝑐) = (𝑎 + 𝑏)𝑥 + 𝑐 

SOLUTION 

Let 𝑎𝑥2 + 𝑏𝑥 + 𝑐 and 𝑝𝑥2 + 𝑞𝑥 + 𝑟 be arbitrary elements of 𝑃2. 

Then 

𝑇((𝑎𝑥2 + 𝑏𝑥 + 𝑐) + (𝑝𝑥2 + 𝑞𝑥 + 𝑟))

 = 𝑇((𝑎 + 𝑝)𝑥2 + (𝑏 + 𝑞)𝑥 + (𝑐 + 𝑟))

 = (𝑎 + 𝑝 + 𝑏 + 𝑞)𝑥 + (𝑐 + 𝑟)  by definition of 𝑇

 = (𝑎 + 𝑏)𝑥 + 𝑐 + (𝑝 + 𝑞)𝑥 + 𝑟

 = 𝑇(𝑎𝑥2 + 𝑏𝑥 + 𝑐) + 𝑇(𝑝𝑥2 + 𝑞𝑥 + 𝑟)  by definition of 𝑇

 

Thus 𝑇 preserves addition. 

We now show that 𝑇 preserves scalar multiplication. Let 𝑘 be a scalar. 
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𝑇(𝑘(𝑎𝑥2 + 𝑏𝑥 + 𝑐)) = 𝑇(𝑘𝑎𝑥2 + 𝑘𝑏𝑥 + 𝑘𝑐)

= (𝑘𝑎 + 𝑘𝑏)𝑥 + 𝑘𝑐

= 𝑘((𝑎 + 𝑏)𝑥 + 𝑐)

= 𝑘𝑇(𝑎𝑥2 + 𝑏𝑥 + 𝑐)  by definition of 𝑇

 by definition of 𝑇

 

𝑇 preserves scalar multiplication. Therefore, 𝑇 is a linear transformation. 

We now see that the properties of the derivative that the reader will have met in calculus courses imply 

that the derivative is a linear transformation. 

EXAMPLE 3 Let 𝐷 be the operation of taking the derivative. ( 𝐷 is the same as 
𝑑

𝑑𝑥
. It is a more 

appropriate notation in this context than 
𝑑

𝑑𝑥
.) 𝐷 can be interpreted as a mapping of 𝑃𝑛 into itself. For example, 

𝐷(4𝑥3 − 3𝑥2 + 2𝑥 + 1) = 12𝑥2 − 6𝑥 + 2 

𝐷 maps the element 4𝑥3 − 3𝑥2 + 2𝑥 + 1 of 𝑃3 into the element 12𝑥2 − 6𝑥 + 2 of 𝑃3. 

Let 𝑓 and 𝑔 be elements of 𝑃𝑛 and 𝑐 be a scalar. We know that a derivative has the following properties. 

𝐷(𝑓 + 𝑔) = 𝐷𝑓 + 𝐷𝑔

𝐷(𝑐𝑓) = 𝑐𝐷(𝑓)
 

The derivative thus preserves addition and scalar multiplication of functions. It is a linear transformation. 

 

Change of basis:  

Let's consider a vector space V with two different bases: 𝐵 = {𝑣1, 𝑣2, … 𝑣𝑛} and 𝐵′ =

{𝑢1, 𝑢2, … 𝑢𝑛} 

If we have a vector v expressed in terms of the basis B as 𝑣 = 𝑐1𝑣1 + 𝑐2𝑣2 + ⋯ + 𝑐𝑛𝑣𝑛, then we 

can find the representation of the same vector in terms of the basis 𝐵′ by solving a system of linear 

equations. 

Change of Basis Matrix: 

The relationship between the two bases can be expressed using a matrix, known as the change of 

basis matrix. If P is the matrix whose columns are the vectors in B, and P′ is the matrix whose 

columns are the vectors in B′, then the change of basis matrix from B to B′ is given by 𝑃′−1𝑃. This 

matrix essentially transforms a vector from the original basis to a new basis. 
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Given a vector v expressed in terms of the original basis B as  𝑣 = 𝑐1𝑣1 + 𝑐2𝑣2 + ⋯ + 𝑐𝑛𝑣𝑛, its 

representation in the new basis B′ is given by 𝑣′ = 𝑃′−1𝑣,  where v′ is the column vector of 

coefficients in the new basis. 

Change of Basis in Linear Transformations: 

Linear transformations can be represented by matrices. Suppose there is a linear transformation  

𝑇: 𝑉 → 𝑊 between vector spaces V and W. If V and W have bases B and B′ respectively, and P 

and P′ are the change of basis matrices, then the matrix representation of T in the B-B′ basis is given 

by 𝑃′−1𝑇𝑃 

Definition:  

The standard basis for 𝑅2 is {𝑒1, 𝑒2}. Any vector 𝑋 = [
𝑥1

𝑥2
] in 𝑅2 can be expressed as linear 

combination            𝑋 = 𝑥1𝑒1 + 𝑥2𝑒2.  

The scalars 𝑥1 and 𝑥2 are coordinates of 𝑋 wrt {𝑒1, 𝑒2}. [
𝑥1

𝑥2
]  is called coordinate vector of 𝑋 wrt 

{𝑒1, 𝑒2} or just coordinate vector of 𝑋.  

Now let {𝑦, 𝑧} be any other basis in 𝑅2. Then vector 𝑋 = [
𝑥1

𝑥2
]can also be represented uniquely as           

𝑋 = 𝑥1𝑦 + 𝑥2𝑧 

The scalars 𝑥1 and 𝑥2 are coordinates of 𝑋 wrt {𝑦, 𝑧}. [
𝑥1

𝑥2
]  is called coordinate vector of 𝑋 wrt  

{𝑦, 𝑧} 

The coordinate vector of 𝑋 wrt the basis {𝑧, 𝑦} is  [
𝑥2

𝑥1
] since 𝑋 = 𝑥2𝑧 + 𝑥1𝑦 

ie coordinate vector changes when the order of basis changes. To avoid confusion, we consider 

ordered basis. 

In ordered basis {𝑦, 𝑧}, 𝑦 is the 1st basis vector, 𝑧 is the 2nd basis vector. 

Example: Let {𝑦1, 𝑦2} be the basis in 𝑅2, where 𝑦1 = [
2
1

] 𝑎𝑛𝑑 𝑦2 = [
1
4

] . Let 𝑋 = [
7
7

] be a vector 

in 𝑅2. Then coordinate vector of 𝑋 wrt {𝑦1, 𝑦2} is [
3
1

] sine 𝑋 = 3𝑦1 + 1𝑦2 
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Changing coordinates:  

1. Consider the following basis of 𝑅2: 𝐸 = {𝑒1, 𝑒2} = {(1,0), (0,1)} and 𝑆 = {𝑢1, 𝑢2} =

{(1,3), (1,4)} 

i) Find the change of basis matrix P from the matrix E to S 

ii) Find the change of basis matrix Q from the matrix S to E 

iii) Find the coordinate of 𝑣 = [
5

−3
] relative to S 

Solution:  

i) To find the change of basis matrix from basis E to basis S, you need to express each vector in 

basis E as a linear combination of vectors in basis S and then arrange the coefficients in a matrix. Let's 

denote the change of basis matrix from E to S as P. 

Given basis vectors: 𝐸 = {(1,0), (0,1)}, 𝑆 = {(1,3), (1,4)} 

Let 𝑃 = [
𝑝11 𝑝12

𝑝21 𝑝22
]  

For (1,0) in basis E, express it as a linear combination of basis vectors in S: 

(1,0) = 𝑝11(1,3) + 𝑝21(1,4) 

This leads to the system of equations: 

1 = 𝑝11 + 𝑝21 and 0 = 3𝑝11 + 4𝑝21 

Solving this system will give you the values of  𝑝11 = 4, 𝑝21 = −3 

Repeat the process for  

(0,1) = 𝑝12(1,3) + 𝑝22(1,4) 

This leads to the system of equations: 

0 = 𝑝12 + 𝑝22 and 1 = 3𝑝21 + 4𝑝22 



   MANGALORE INSTITUTE OF TECHNOLOGY & ENGINEERING 
(A Unit of Rajalaxmi Education Trust®, Mangalore) 

Autonomous Institute affiliated to VTU, Belagavi, Approved by AICTE, New Delhi 

Accredited by NAAC with A+ Grade & ISO 9001:2015 Certified Institution 
 

   23BSCC102                                                                                                                                       Engineering Mathematics - I 

    

Solving this system will give you the values of 𝑝21 = −1, 𝑝22 = 1 

The resulting matrix P will be the change of basis matrix from E to S. 

𝑃 = [
4 −1

−3 1
] 

ii) Now, to find the change of basis matrix from S to E, you can follow a similar procedure.  

Let 𝑞 = [
𝑞11 𝑞21

𝑞12 𝑞22
] 

For (1,3) in basis S, express it as a linear combination of basis vectors in E: 

(1,3) = 𝑞11(1,0) + 𝑞12(0,1) 

This leads to the system of equations: 1 = 𝑞11 and 3 = 𝑞12 which gives the values of 𝑞11and 𝑞12 

Repeat the process for (1,4) = 𝑞21(1,0) + 𝑞22(0,1) 

This leads to the system of equations:1 = 𝑞21and 4 = 𝑞22 gives the values of 𝑞21and 𝑞22 

The resulting matrix Q will be the ch1ange of basis matrix from S to E. 

𝑞 = [
1 1
3 4

] 

iii) To find the coordinates of the vector 𝑣 = [
5

−3
] with respect to the basis 𝑆 = {𝑢1, 𝑢2} =

{(1,3), (1,4)}, we need to express v as a linear combination of 𝑢1𝑎𝑛𝑑 𝑢2 . The coordinates  

[a,b] of v with respect to the basis S are the coefficients in this linear combination. The given basis 

vectors are: 𝑢1 = (1,3) nd 𝑢2 = (1,4), we want to find a and b such that: 𝑣 =  𝑎𝑢1 + 𝑏𝑢2  

Substitute the components of v and the basis vectors: [
5

−3
] = 𝑎 [

1
3

] + 𝑏 [
1
4

] 

Now, set up a system of equations and solve for a and b: 𝑎 + 𝑏 = 5;  3𝑎 + 4𝑏 = −3 

 On solving 𝑎 = 23, 𝑏 = −18 

 

2. The vector 𝑢1 = (1,2,0), 𝑢2 = (1,3,2, ), 𝑢3 = (0,1,3)form a basis 𝑆 of 𝑅3 

i) Find the change of  basis matrix P from the usual basis 𝐸 = {𝑒1, 𝑒2, 𝑒3} of 𝑅3 to the basis S 

ii) Find the change of basis matrix Q from the basis S to the usual basis E 

Solution: P= [
1 1 0
2 3 1
0 2 3

] , 𝑄 = [
7 −3 1

−6 3 −1
4 −2 1

] 

3. Find the coordinates of the following vectors relative to the basis (1,1,2), (2,2,1), (1,2,2) 

i) (1,1,1)    Ans: (1/3,1/3,0) 
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ii) (1,0,1)   Ans: (4/3,1/3,-1) 

iii) (1,1,0)          Ans: (-1/3,2/3,0) 

 

Problems:  

1. Let 𝑉 = 𝑅3 and let 𝑆 = {𝑣1, 𝑣2, 𝑣3}  𝑎𝑛𝑑 𝑇 = {𝑤1, 𝑤2, 𝑤3} be the basis of 𝑅3, where 

𝑣1 = [
1
2
3

], 𝑣2 = [
−2
1
0

] , 𝑣3 = [
1
0
1

] , 𝑤1 = [
1
1
0

] , 𝑤2 = [
0
1
2

] , 𝑤3 = [
1
1
1

] 

Obtain the transition matrix from T to S 

Solution: [

3

2

−2

−
9

2

    
0
1
2

    
1

−1
−2

] 

2. Let 𝑉 = 𝑅3 and let 𝐸 = {𝑣1, 𝑣2, 𝑣3}  𝑎𝑛𝑑 𝐹 = {𝑢1, 𝑢2, 𝑢3} be the basis of 𝑅3, where 𝑣1 =

[
1
1
1

], 𝑣2 = [
2
3
2

] , 𝑣3 = [
1
5
4

] , 𝑢1 = [
1
1
0

] , 𝑢2 = [
1
2
0

] , 𝑢3 = [
1
2
1

] 

Let 𝑋 = 3𝑣1 + 2𝑣2 − 𝑣3; 𝑌 = 𝑣1 − 3𝑣2 + 2𝑣3 . Obtain the transition matrix from E to F, use it to 

find coordinate vectors of X and Y with respect to the ordered basis F  

Solution: Transition matrix = [
1

−1
1

    
1

−1
2

    
−3
0
4

],  [𝑋]𝐹 = [
8

−5
3

], [𝑌]𝐹 = [
−8
2
3

] 

3. Find the transition matrix corresponding to the change of basis from {𝑣1 , 𝑣2} to 

{𝑢1 , 𝑢2}, where 𝑣1 = [
5
2

] , 𝑣2 = [
7
3

] , 𝑢1 = [
3
2

] , 𝑢2 = [
1
1

] 

Solution: [
3 4

−4 −5
] 

4. Let 𝑢1 = [
1

−1
] , 𝑢2 = [

−2
3

]. Find the transition matrix from {𝑒1, 𝑒2} to {𝑢1, 𝑢2} nd 

determine the coordinate of 𝑋 = [
1
2

] with respect to {𝑢1, 𝑢2} 

Solution: Transition matrix = [
3 2
1 1

], [𝑋]{𝑢1,𝑢2} = [
7
3

] 

5. Let 𝑢1 = [
3
2

] , 𝑢2 = [
1
1

] , 𝑋 = [
7
4

]. Find the coordinate of X with respect to {𝑢1, 𝑢2} 

Solution: [𝑋]{𝑢1,𝑢2} = [
3

−2
] 

 

APPLICATIONS OF CHANGE OF BASIS: 

 
Changing the basis of a vector space involves expressing vectors in terms of different sets of basis   

vectors. This concept finds applications in various fields: 

 

Computer Graphics: In computer graphics, objects are represented in 3D space using vectors. 

Changing the basis allows for transformations like rotation, scaling, and translation of objects. It's 

crucial for rendering objects in different orientations or coordinate systems. 
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Engineering (Control Systems): Control systems analysis often involves transforming differential 

equations or system representations from one basis to another to simplify analysis and design 

procedures. 

 

Signal Processing: Signal processing involves manipulating signals using various mathematical 

operations. Changing the basis can help simplify signal analysis, compression, and filtering by 

choosing bases that better represent signal characteristics. 

 

Machine Learning and Data Analysis: Techniques like Principal Component Analysis (PCA) 

involve changing the basis of data vectors to find more meaningful representations or reduce the 

dimensionality of high-dimensional data. 

 

Cryptography: Changing bases can be used in cryptographic algorithms, where secure 

communications involve transforming data using specific bases to make it harder for unauthorized 

parties to interpret. 

 

Linear Transformation Analysis: Understanding linear transformations involves studying how they 

change bases and how this affects the representation of vectors and matrices. Applications include 

understanding transformation properties in various fields, including physics and engineering. 

 

In essence, changing the basis provides a way to view data or systems from different perspectives, 

simplifying calculations or analyses, highlighting important features, and aiding in problem-solving 

in various disciplines. It's a fundamental tool in manipulating and understanding vector spaces and 

their applications across diverse fields of study. 

                      

Kernel and Range 

We know that a linear transformation is a function from one vector space (called the domain) into 

another vector space (called the codomain.) There are two further vector spaces called kernel and range that 

are associated with every linear transformation. In this section we introduce and discuss the properties of 

these spaces. 

The following theorem gives an important property of all linear transformations. It paves the way for 

the introduction of kernel and range. 

THEOREM  

Let 𝑇: 𝑈 → 𝑉 be a linear transformation. Let 𝟎𝑈 and 𝟎𝑉 be the zero vectors of 𝑈 and 𝑉. Then 

𝑇(𝟎𝑈) = 𝟎𝑉 

That is, a linear transformation maps a zero vector into a zero vector. 
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Proof: Let 𝐮 be a vector in 𝑈 and let 𝑇(𝐮) = 𝐯. Let 0 be the zero scalar. Since 0𝐮 = 𝟎𝑈 and 0𝐯 = 𝟎𝑉 

and 𝑇 is linear, we get 

𝑇(𝟎𝑈) = 𝑇(0𝐮) = 0𝑇(𝐮) = 0𝐯 = 𝟎𝑉 

For example, 𝑇(𝑥, 𝑦, 𝑧) = (3𝑥, 𝑦 + 𝑧) is a linear transformation of 𝐑3 → 𝐑2. The zero vector of 𝐑3 is 

(0,0,0) and the zero vector of 𝐑2 is (0,0). We see that 𝑇(0,0,0) = (0,0). 

DEFINITION Let 𝑇: 𝑈 → 𝑉 be a linear transformation. 

The set of vectors in 𝑼 that are mapped into the zero vector of 𝑽 is called the kernel of 𝑻. The 

kernel is denoted 𝐤𝐞 𝐫(𝑻). The kernel is often called the null space and denoted null (𝑇). 

The set of vectors in 𝑽 that are the images of vectors in 𝑼 is called the range of 𝑻. The range is 

denoted range (𝑻). 

We illustrate these sets in following Figure. Whenever we introduce sets in linear algebra, we are 

interested in knowing whether they are vector spaces or not. We now find that the kernel and range are 

indeed vector spaces. 

 

Kernel 

All vectors in 𝑈 that are mapped into 𝟎 
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Range 

All vectors in 𝑉 that are images of vectors in 𝑈 

THEOREM  

Let 𝑻: 𝑼 → 𝑽 be a linear transformation. 

(a) The kernel of 𝑻 is a subspace of 𝑼. 

(b) The range of 𝑻 is a subspace of 𝑽. 

Proof 

(a) From the previous theorem, we know that the kernel is nonempty since it contains the zero vector of 

𝑈. To prove that the kernel is a subspace of 𝑈, it remains to show that it is closed under addition and scalar 

multiplication. 

First, we prove closure under addition. Let 𝐮1 and 𝐮2 be elements of ker(𝑇). Thus 𝑇(𝐮1) = 𝟎 and 

𝑇(𝐮2) = 𝟎. Using the linearity of 𝑇, we get 

𝑇(𝐮1 + 𝐮2) = 𝑇(𝐮1) + 𝑇(𝐮2) = 𝟎 + 𝟎 = 𝟎 

The vector 𝐮1 + 𝐮2 is mapped into 𝟎. Thus 𝐮1 + 𝐮2 is in ker(𝑇). 

Let us now show that ker(𝑇) is closed under scalar multiplication. Let 𝑐 be a scalar. Again, using the 

linearity of 𝑇, we get 

𝑇(𝑐𝐮1) = 𝑐𝑇(𝐮1) = 𝑐𝟎 = 𝟎 

The vector 𝑐𝐮1 is mapped into 𝟎. Thus 𝑐𝐮1 is in ker(𝑇). 
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The kernel is closed under addition and under scalar multiplication. It is a subspace of 𝑈. 

(b) The previous theorem tells us that the range is nonempty since it contains the zero vector of 𝑉. To 

prove that the range is a subspace of 𝑉, it remains to show that it is closed under addition and scalar 

multiplication. Let 𝐯1 and 𝐯2 be elements of range(𝑇). Thus, there exist vectors 𝐰1 and 𝐰2 in the domain 

𝑈 such that 

𝑇(𝐰1) = 𝐯1 and 𝑇(𝐰2) = 𝐯2 

Using the linearity of 𝑇, 

𝑇(𝐰1 + 𝐰2) = 𝑇(𝐰1) + 𝑇(𝐰2) = 𝐯1 + 𝐯2 

The vector 𝐯1 + 𝐯2 is the image of 𝐰1 + 𝐰2. Thus 𝐯1 + 𝐯2 is in the range. 

Let 𝑐 be a scalar. By the linearity of 𝑇, 

𝑇(𝑐𝐰1) = 𝑐𝑇(𝐰1) = 𝑐𝐯1 

The vector 𝑐𝐯1 is the image of 𝑐𝐰1. Thus 𝑐𝐯1 is in the range. 

The range is closed under addition and under scalar multiplication. It is a subspace of 𝑉. 

EXAMPLE 4 Find the kernel and range of the linear operator 

𝑻(𝒙, 𝒚, 𝒛) = (𝒙, 𝒚, 𝟎) 

SOLUTION 

Since the linear operator 𝑇 maps 𝐑3 into 𝐑3, the kernel and range will both be subspaces of 𝐑3. 

Kernel: ker(𝑇) is the subset that is mapped into (0,0,0). We see that 

𝑇(𝑥, 𝑦, 𝑧) = (𝑥, 𝑦, 0)

 = (0,0,0), if 𝑥 = 0, 𝑦 = 0
 

Thus ker(𝑇) is the set of all vectors of the form (0,0, 𝑧). We express this 

ker(𝑇) = {(0,0, 𝑧)} 

Geometrically, ker(𝑇) is the set of all vectors that lie on the 𝑧-axis. 

Range: The range of 𝑇 is the set of all vectors of the form (𝑥, 𝑦, 0). Thus 

range(𝑇) = {(𝑥, 𝑦, 0)} 

range (𝑇) is the set of all vectors that lie in the 𝑥𝑦-plane. 
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We illustrate this transformation in Figure. Observe that 𝑇 projects the vector (𝑥, 𝑦, 𝑧) into the vector 

(𝑥, 𝑦, 0) in the 𝑥𝑦-plane. 𝑇 projects all vectors onto the 𝑥𝑦-plane. 𝑇 is an example of a projection operator. 

 

 projection 

𝑇(𝑥, 𝑦, 𝑧) = (𝑥, 𝑦, 0)
 

Projections are important in applications. The world in which we live has three spatial dimensions. When 

we observe an object, however, we get a two-dimensional impression of that object, the view changing from 

location to location. Projections can be used to illustrate what three-dimensional objects look like from 

various locations. Such transformations, for example, are used in architecture, the auto industry, and the 

aerospace industry. The outline of the object of interest, relative to a suitable coordinate system, is fed into 

a computer. The computer program contains an appropriate projection transformation that maps the object 

onto a plane. The output gives a two-dimensional view of the object, the picture being graphed by the 

computer. In this manner various transformations can be used to lead to various perspectives of an object. 

We now discuss kernels and ranges of matrix transformations. The following theorem gives us information 

about the range of a matrix transformation. 

THEOREM  

Let 𝑇: 𝐑𝑛 → 𝐑𝑚 be defined by 𝑇(𝐮) = 𝐴𝐮. The range of 𝑇 is spanned by the column vectors of 𝐴. 

Proof: Let 𝐯 be a vector in the range. There exists a vector 𝐮 such that 𝑇(𝐮) = 𝐯. Express 𝐮 in terms of 

the standard basis of 𝐑𝑛. 

𝐮 = 𝑐1𝐞1 + ⋯ + 𝑐𝑛𝐞𝑛 

Thus 

𝐯 = 𝑇(𝑐1𝐞1 + ⋯ + 𝑐𝑛𝐞𝑛)

 = 𝑐1𝑇(𝐞1) + ⋯ + 𝑐𝑛𝑇(𝐞𝑛)
 

Therefore, the column vectors of 𝐴, namely, 𝑇(𝐞1), … , 𝑇(𝐞𝑛), span the range of 𝑇. 

EXAMPLE 5 Determine the kernel and the range of the transformation defined by the following matrix. 



   MANGALORE INSTITUTE OF TECHNOLOGY & ENGINEERING 
(A Unit of Rajalaxmi Education Trust®, Mangalore) 

Autonomous Institute affiliated to VTU, Belagavi, Approved by AICTE, New Delhi 

Accredited by NAAC with A+ Grade & ISO 9001:2015 Certified Institution 
 

   23BSCC102                                                                                                                                       Engineering Mathematics - I 

    

𝐴 = [
1 2 3
0 −1 1
1 1 4

] 

SOLUTION 

𝐴 is a 3 × 3 matrix. Thus 𝐴 defines a linear operator 𝑇: 𝐑3 → 𝐑3, 

𝑇(𝐱) = 𝐴𝐱 

The elements of 𝐑3 are written in column matrix form for the purpose of matrix multiplication.  

Kernel: The kernel will consist of all vectors 𝐱 = (𝑥1, 𝑥2, 𝑥3) in 𝐑3 such that 

𝑇(𝐱) = 𝟎 

Thus, 

[
1 2 3
0 −1 1
1 1 4

] [

𝑥1

𝑥2

𝑥3

] = [
0
0
0

] 

This matrix equation corresponds to the following system of linear equations. 

𝑥1 + 2𝑥2 + 3𝑥3 = 0
−𝑥2 + 𝑥3 = 0

𝑥1 + 𝑥2 + 4𝑥3 = 0
 

On solving this system, we get many solutions, 𝑥1 = −5𝑟, 𝑥2 = 𝑟, 𝑥3 = 𝑟. The kernel is thus the set of 

vectors of the form (−5𝑟, 𝑟, 𝑟). 

Ker(𝑇) = {(−5𝑟, 𝑟, 𝑟)} 

Ker(𝑇) is a one-dimensional subspace of 𝐑3 with basis (−5,1,1). 

Range: The range is spanned by the column vectors of 𝐴. Write these column vectors as rows of a matrix 

and compute an echelon form of the matrix. The nonzero row vectors will give a basis for the range. We get 

[
1 0 1
2 −1 1
3 1 4

] ≈ [
1 0 1
0 −1 −1
0 1 1

] ≈ [
1 0 1
0 1 1
0 1 1

] ≈ [
1 0 1
0 1 1
0 0 0

] 

The vectors (1,0,1) and (0,1,1) span the range of 𝑇. An arbitrary vector in the range will be a linear 

combination of these vectors, 

𝑠(1,0,1) + 𝑡(0,1,1) 

Thus, the range of 𝑇 is 
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Range(𝑇) = {(𝑠, 𝑡, 𝑠 + 𝑡)} 

The vectors (1,0,1) and (0,1,1) are also linearly independent. Range (𝑇) is a twodimensional subspace 

of 𝐑3 with basis {(1,0,1), (0,1,1)}. 

The following theorem gives an important relationship between the "sizes" of the kernel and the range 

of a linear transformation. 

THEOREM 

Let 𝑇: 𝑈 → 𝑉 be a linear transformation. Then 

dim ker(𝑇) + dim range(𝑇) = dim domain(𝑇) 

(Observe that this result holds for the linear transformation 𝑇 of the previous example: dim ker(𝑇) =

1, dim range(𝑇) = 2, dim domain(𝑇) = 3.) 

Proof: (For reference) Let us assume that the kernel consists of more than the zero vector, and that it 

is not the whole of 𝑈.  

Let 𝐮1, … , 𝐮𝑚 be a basis for ker(𝑇). Add vectors 𝐮𝑚+1, … , 𝐮𝑛 to this set to get a basis 𝐮1, … , 𝐮𝑛 for 𝑈. 

We shall show that 𝑇(𝐮𝑚+1), … , 𝑇(𝐮𝑛) form a basis for the range, thus proving the theorem. 

Let 𝐮 be a vector in 𝑈. 𝐮 can be expressed as a linear combination of the basis vectors as follows. 

𝐮 = 𝑎1𝐮1 + ⋯ + 𝑎𝑚𝐮𝑚 + 𝑎𝑚+1𝐮𝑚+1 + ⋯ + 𝑎𝑛𝐮𝑛 

Thus 

𝑇(𝐮) = 𝑇(𝑎1𝐮1 + ⋯ + 𝑎𝑚𝐮𝑚 + 𝑎𝑚+1𝐮𝑚+1 + ⋯ + 𝑎𝑛𝐮𝑛) 

The linearity of 𝑇 gives 

𝑇(𝐮) = 𝑎1𝑇(𝐮1) + ⋯ + 𝑎𝑚𝑇(𝐮𝑚) + 𝑎𝑚+1𝑇(𝐮𝑚+1) + ⋯ + 𝑎𝑛𝑇(𝐮𝑛) 

Since 𝐮1, … , 𝐮𝑚 are in the kernel, this reduces to 

𝑇(𝐮) = 𝑎𝑚+1𝑇(𝐮𝑚+1) + ⋯ + 𝑎𝑛𝑇(𝐮𝑛) 

𝑇(𝐮) represents an arbitrary vector in the range of 𝑇. Thus, the vectors 𝑇(𝐮𝑚+1), … , 𝑇(𝐮𝑛) span the 

range. 

It remains to prove that these vectors are also linearly independent. Consider the identity 

𝑏𝑚+1𝑇(𝐮𝑚+1) + ⋯ + 𝑏𝑛𝑇(𝐮𝑛) = 𝟎 

where the scalars have been labeled thus for convenience. The linearity of 𝑇 implies that 
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𝑇(𝑏𝑚+1𝐮𝑚+1 + ⋯ + 𝑏𝑛𝐮𝑛) = 𝟎 

This means that the vector 𝑏𝑚+1𝐮𝑚+1 + ⋯ + 𝑏𝑛𝐮𝑛 is in the kernel. Thus, it can be expressed as a linear 

combination of the basis of the kernel. Let 

𝑏𝑚+1𝐮𝑚+1 + ⋯ + 𝑏𝑛𝐮𝑛 = 𝑐1𝐮1 + ⋯ + 𝑐𝑚𝐮𝑚 

Thus 

𝑐1𝐮1 + ⋯ + 𝑐𝑚𝐮𝑚 − 𝑏𝑚+1𝐮𝑚+1 − ⋯ − 𝑏𝑛𝐮𝑛 = 𝟎 

Since the vectors 𝐮1, … , 𝐮𝑚, 𝐮𝑚+1, … , 𝐮𝑛 are a basis, they are linearly independent. Therefore, the 

coefficients are all zero. 

𝑐1 = 0, … , 𝑐𝑚 = 0, 𝑏𝑚+1 = 0, … , 𝑏𝑛 = 0 

Returning to identity (1), this implies that 𝑇(𝐮𝑚+1), … , 𝑇(𝐮𝑛) are linearly independent. The set of 

vectors 𝑇(𝐮𝑚+1), … , 𝑇(𝐮𝑛) is a basis for the range. The theorem is proven. 

Note that the "bigger" the kernel, the "smaller" the range, and vice versa. The rank (r) of a matrix is the 

number of leading variables in Row echelon form. The nullity of a matrix is the number of free variables in 

Row echelon form i.e., (n-r). 

Rank Nullity Theorem 

Let 𝐴 be an 𝑚 × 𝑛 matrix that defines a linear transformation 𝑇. We have mentioned that the kernel of 

𝑇 is also called the null space of 𝑇, denoted null( 𝑇). The dimension of null (𝑇) is called nullity (𝑇). The 

range of 𝑇 is the subspace of 𝐑𝑚 spanned by the column vectors of 𝐴). Thus, the dimension of the range of 

𝑇 is rank(𝐴); and we say that rank(𝑇) = rank(𝐴). Then we can write 

rank(𝑇) + nullity(𝑇) = dim domain(𝑇) 

EXAMPLE 6 Consider the following matrix 𝐴 and the linear transformation 𝑇 defined by 𝐴. Find 

rank(𝐴) , dim domain(𝑇) , dim range(𝑇) , dim ker(𝑇), and nullity(𝑇). 

𝐴 = [
1 0 3
0 1 5
0 0 0

] 

SOLUTION 

Observe that the matrix 𝐴 is in echelon form. The nonzero row vectors are linearly independent. Thus, 

rank(𝐴) = 2. Since 𝐴 is a 3 × 3 matrix, 𝑇: 𝐑3 → 𝐑3. Thus dim domain(𝑇) = 3. 

dim range(𝑇) = rank(𝐴) = 2. 

dim ker(𝑇) = dim domain(𝑇) − dim range(𝑇) = 3 − 2 = 1 
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∴ nullity(𝑇) = dim kernel(𝑇) = 1. 

7. Consider the matrix 

𝐴 = [
3 1

−6 −2
 ] 

 

Here, the rank is 1, since the basis {(3, −6), (1, −2)} can be reduced to {(1, −2)}. The kernel of A is 

vectors such that 𝐴𝑣 = 0, which is a vector space spanned by {(1, −3)} and has dimension 1. Hence the 

rank and nullity are both 1, and sum to 2, the number of columns in A. 

8.This can be applied to non-square matrices as well. For instance, in the matrix 

𝐴 = [
2 5 −3
1 4 2

] 

the rank is 2, spanned by the first two columns of A, and the kernel is a vector space spanned by {(22, 

−7, 3)} that thus has dimension 1. As expected, the sum of the rank and nullity is thus 3, the number of 

columns in A. 

9. 𝑇: 𝑉3(𝑅) → 𝑉3(𝑅) defined by 𝑇(𝑥, 𝑦, 𝑧) = (𝑥 + 𝑦, 𝑥 − 𝑦, 2𝑥 + 𝑧), verify the rank nullity theorem. 

Solution: 𝑇(1,0,0) = (1,1,2): 𝑇(0,1,0) = (1, −1,0): 𝑇(0,0,1) = (0,0,1) 

Consider, 𝐴 = [
1 1 2
1 −1 0
0 0 1

]
𝑅2 → −𝑅1 + 𝑅2

~
 [

1 1 2
1 −2 −2
0 0 1

] 𝑅2 → −
1

2(𝑅2)
~

[
1 1 2
1 1 1
0 0 1

] 

∴ 𝑟(𝑇) = 3 𝑎𝑛𝑑 𝑛(𝑇) = 0 

𝑟(𝑇) + 𝑛(𝑇) = 3 + 0 = 3 = 𝑑[𝑉3(𝑅)] 

Theorem is verified.  

10. 𝑇: 𝑉3(𝑅) → 𝑉3(𝑅) defined by 𝑇(𝑥, 𝑦, 𝑧) = (𝑥 + 2𝑦 + 𝑧, 𝑧 −  𝑥, 𝑦 + 𝑧), verify the rank nullity 

theorem. 

Answer:  
𝑟(𝑇) + 𝑛(𝑇) = 2 + 1 = 3 = 𝑑[𝑉3(𝑅)] 

 

11. 𝐴 =  [
1 1 2 3
3 4 −1 2

−1 −2 5 4
] , find a basis for null-space(A) and verify rank nullity theorem.  

Answer: rank(A) + nullity(A) = 2 + 2 = 4 = n. 

12. determine the null space and verify the Rank-Nullity Theorem. 

https://brilliant.org/wiki/basis/
https://brilliant.org/wiki/basis/
https://brilliant.org/wiki/vector-space/
https://brilliant.org/wiki/vector-space/
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a. 𝐴 = [1 0 −6 −1]    b. 𝐵 = [
2 −1

−4 2
]   c. 𝐶 = [

1 1 −1
3 4 4
1 1 0

]    d. 𝐷 = [
1 4 −1 3
2 9 −1 7
2 8 −2 6

]. 

APPLICATIONS OF RANK AND NULLITY 
 

The rank and nullity of a matrix are crucial concepts in linear algebra and have numerous applications 

across various fields: 

 

Solving Systems of Linear Equations: Understanding the rank and nullity of a matrix is essential in 

solving systems of linear equations. The rank gives insights into the number of independent equations 

or rows in a system, while the nullity provides information about the dimension of the solution space. 

 

Control Systems: In control theory, the rank-nullity theorem helps in analyzing the controllability and 

observability of systems. It assesses whether a system's dynamics can be controlled or observed given 

certain constraints. 

 

Data Analysis (Statistics and Machine Learning): Understanding the rank and nullity of a data matrix 

is crucial in principal component analysis (PCA) and feature selection. The rank helps identify the 

dimensionality of the dataset, and the nullity can indicate redundant or irrelevant features. 

 

Image and Signal Processing: In image and signal compression, the rank-nullity theorem aids in 

understanding the fundamental limits of compression algorithms. It helps in identifying the essential 

information in an image or signal that needs to be retained for faithful reconstruction. 

 

Coding Theory: In coding theory, understanding the rank and nullity is crucial for error-correcting 

codes. The rank-nullity theorem is used to design codes that can detect and correct errors in data 

transmission. 

 

Graph Theory: The rank and nullity of a matrix representation of a graph are used to analyze properties 

of graphs, such as connectivity, cycles, and paths. 

 

Eigenvalues and Eigenvectors: The rank-nullity theorem is related to eigenvalues and eigenvectors. It 

helps in understanding the properties of eigenvalues, especially in determining the number of non-zero 

eigenvalues. 

 

Physics (Quantum Mechanics): In quantum mechanics, matrices representing physical systems can 

have specific properties related to their rank and nullity, providing insights into the nature of the 

system's states and observables. 

 

In essence, the rank and nullity of matrices play a fundamental role in various mathematical, 

engineering, scientific, and computational applications, providing crucial insights into the structure, 

behavior, and solvability of systems described by linear transformations or matrices. 
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Eigen Values and Eigen Vectors: Let 𝐴 be an 𝑛 × 𝑛 matrix. A Scalar λ is called an eigenvalue of 

𝐴 if there exist a nonzero vector 𝐱 in ℝ𝑛 such that 𝐴𝐱 = λ𝐱. The vector 𝐱 is called eigenvector corresponding to 

λ. 

Let us look at the geometrical significance of an eigenvector that corresponds to a nonzero eigenvalue. The 

vector 𝐴𝐱 is in the same or opposite direction as 𝐱, depending on the sign of  𝜆. An eigenvector of A is thus a 

vector whose direction is unchanged or reversed when multiplied by A. 

 

 𝜆 < 0             

  

                  

 𝑂  𝐴𝐱 

                        x is an eigenvector of A. Ax is in the same or opposite direction as x. 

Computation of Eigenvalues and Eigenvectors: Let 𝐴 be an 𝑛 × 𝑛 matrix with 

eigenvalue 𝜆  and corresponding eigenvector x. Thus 𝐴𝐱 = 𝜆𝐱.This equation may be rewritten, 

𝐴𝐱 − 𝜆𝐱 = 𝟎 

(𝐴𝐱 − 𝜆𝐼𝑛)𝐱 = 𝟎 

This matrix equation represents a system of homogeneous linear equations having matrix of 

coefficients 

(𝐴 − λ𝐼𝑛)𝐱 = 𝟎 is a solution to this system. However, eigenvectors have been defined to be 

nonzero vectors. Further, nonzero solutions to this system of equations can only exist if the matrix of 

coefficients is singular, |𝐴 − 𝜆𝐼𝑛| = 0. Hence, solving the equation |𝐴 − 𝜆𝐼𝑛| = 0 for 𝜆 leads to all the 

eigenvalues of A. 

On expanding the determinant |𝐴 − 𝜆𝐼𝑛| we get a polynomial of degree 𝑛 in 𝜆. This polynomial is 

called the characteristic polynomial of 𝐴. The equation |𝐴 − 𝜆𝐼𝑛| = 0 is called the characteristic 

equation of 𝐴. This characteristic equation will have 𝑛 roots, some possibly repeated, some possibly 

complex numbers.  

 

Thus an  𝑛 × 𝑛 matrix will have 𝑛 eigenvalues, some of which may be repeated, and some of 

which may be complex numbers. The eigenvalues are then substituted back into the equation  
(𝐴𝐱 − 𝜆𝐼𝑛)𝐱 = 𝟎 to find the corresponding eigenvectors. 

 

 

 

 

 

 

𝐱 

 𝐴𝐱  𝜆 > 0 

𝐱 
O 
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Example 1: Find the eigenvalues and eigenvectors of the matrix 𝐴 = [
−4 −6
3 5

] 

 

Solution: Let us first derive the characteristic polynomial of A. We get, 

𝐴 − λ𝐼2 = [
−4 −6
3 5

] − λ [
1 0
0 1

] = [
−4 −  𝜆 −6

3 5 − 𝜆
] 

|𝐴 = λ𝐼2| = (−4 − 𝜆)(5 − 𝜆) + 18 = 𝜆2 − 𝜆 − 2 

𝜆2 − 𝜆 − 2 = 0 

(𝜆 − 2)(𝜆 + 1) = 0 

𝜆 = 2 𝑜𝑟 − 1. 

The eigenvalues of A are 2 or -1. 

The corresponding eigenvectors are found by using these values of in the equation (𝐴𝐱 − 𝜆𝐼𝑛)𝐱 = 𝟎. 
There are many eigenvectors corresponding to each eigenvalue. 

 When λ = 2, we solve the equation (𝐴 − 2𝐼2)𝑥 = 0 for x . The matrix (𝐴 − 2𝐼2)is obtained by 

subtracting 2 from the diagonal elements of A. We get, 

 

[
−6 −6
3 3

] [
𝑥1

𝑥2
] = 0 

This leads to the system of equation,             −6𝑥1 − 6𝑥2 = 0 

3𝑥1 + 3𝑥2 = 0 

 

giving 𝑥1 = −𝑥2. The solutions to this system of equations are 𝑥1 = −𝑟, 𝑥2 = 𝑟, where r is a 

scalar. Thus the eigenvectors of A corresponding to 𝜆 = 2 are nonzero vectors of the form  

𝑟 [
−1
1

] = 0 

When 𝜆 = −1, we solve the equation (𝐴 + 1𝐼2)𝑥 = 0 for x . The matrix (𝐴 + 1𝐼2)is obtained by 

subtracting 1 from the diagonal elements of A. We get, 

 

[
−3 −6
3 3

] [
𝑥1

𝑥2
] = 0 

This leads to the system of equation,            −3𝑥1 − 6𝑥2 = 0 

3𝑥1 + 3𝑥2 = 0 

 

giving 𝑥1 = −2𝑥2. The solutions to this system of equations are 𝑥1 = −2𝑠, 𝑥2 = 𝑠, where 𝑠 is a 

scalar. Thus, the eigenvectors of A corresponding to 𝜆 = −1 are nonzero vectors of the form, 

𝑠 [
−2
1

] = 0 

Example 2: Find the eigenvalues and corresponding eigenvectors of the matrix  [
5 4 2
4 5 2
2 2 2

] 

Solution: 

We first obtain the matrix [𝐴 − 𝜆𝐼]. 

𝐴 − 𝜆𝐼 = [
5 − 𝜆 4 2

4 5 − 𝜆 2
2 2 2 − 𝜆

]  
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The characteristic equation is |𝐴 − 𝜆𝐼| = 0. 

Using row and column operations to simplify determinant, we obtain, 

|𝐴 − 𝜆𝐼| = |
5 − 𝜆 4 2

4 5 − 𝜆 2
2 2 2 − 𝜆

| =  |
1 − 𝜆 −1 + 𝜆 0

4 5 − 𝜆 2
2 2 2 − 𝜆

| = |
1 − 𝜆 0 0

4 9 − 𝜆 2
2 4 2 − 𝜆

|  

OR  |𝐴 − 𝜆𝐼| = −( 𝜆 − 10)(𝜆 − 1)2 

 Solving the equation, −( 𝜆 − 10)(𝜆 − 1)2 = 0, gives the eigenvalues as 𝜆 = 10𝑂𝑅𝜆 =

1(𝑅𝐸𝑃𝐸𝐴𝑇𝐸𝐷) 

To find the corresponding eigenvectors, we use the equation [A- 𝜆𝐼]𝑋 = 0. 

For 𝜆 = 10,  

[A- 𝜆𝐼]𝑋 = [𝐴 − 10𝐼]𝑋 = 0 

[
−5 4 2
4 −5 2
2 2 −5

] [
𝑋
𝑌
𝑍

] = 0 = [
0
0
0

] 

On solving the system of linear equations, x=2k, y=2k, z=k, where k is any scalar. 

So, eigenvector of 𝜆 = 10 are non-zero vectors of the form  [
2
2
1

]. 

The eigenspace is {𝑘 [
2
2
2

]}. The set [
2
2
1

] forms a basis and hence, the dimension is 1. 

For 𝜆 = 1,  

[𝐴 − 𝜆𝐼]𝑋 = [𝐴 − 1𝐼]𝑋 = 0 

[
4 4 2
4 4 2
2 2 1

] [
𝑋
𝑌
𝑍

] = 0 = [
0
0
0

] 

On solving the system of linear equations, 𝑥 = −𝑠 − 𝑡, 𝑦 = 𝑠, 𝑧 = 2𝑡, where s and t is any Scalars. 

 

So, eigenvector of 𝜆 = 1 are non-zero vectors of the form [
−𝑠 − 𝑡

2𝑠
2𝑡

]. 
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Practice Problems: 

Determine the eigen value and eigen vectors of the matrices, 

a) [
5 4
1 2

]    b) [
1 −2
1 4

] c) [
5 6

−2 −2
] d) [

3 −1
2 0

] e) [
5 2

−8 −3
] 

f) [
3 2 −2

−3 −1 3
1 2 0

]  g) [
1 −2 2

−2 1 2
−2 0 3

] h)  [
5 −2 −2
4 −3 4
4 −6 7

] 

i) A company has three divisions: A, B, and C. The company's profit matrix is as follows: 

𝑃 = [
10 2 3
3 8 5
4 6 7

] where 𝑃𝑖𝑗 represents the profit that the company makes from selling products 

from division i to division j. Determine the eigenvalues and eigenvectors of the profit matrix. 

j) A college has three departments: Computer Science (CS), Electrical Engineering (EE), and Mechanical 

Engineering (ME). The college's admissions data for the past three years is shown in the following matrix: 

𝐴 = [
100 80 70
90 70 60
80 60 50

] where the element 𝐴𝑖𝑗 represents the number of students who transferred from 

department i to department j in the past three years. Determine the eigenvalues and eigenvectors of the 

admissions matrix. 

Diagonalization:   A square matrix A is said to be diagonalizable if there exists a matrix P such that 

𝐷 = 𝑃−1𝐴𝑃 a diagonal matrix. Where P is a matrix whose column matrix are linearly independent 

eigenvectors. The diagonal elements of D are the eigenvalues of A.   

Remark:  

1) If  𝐴 is diagonalizable, then the column vectors of the diagonalizing matrix 𝑃 are eigenvectors of 𝐴 and 

the diagonal elements of 𝐷 are the corresponding eigenvalues of 𝐴. 

2)  The diagonalizing matrix 𝑃 is not unique. Reordering the columns of a given diagonalizing matrix 𝑃 or 

multiplying them by nonzero scalars will produce a new diagonalizing matrix. 

3)  If 𝐴 is 𝑛 × 𝑛 and 𝐴 has n distinct eigenvalues, then 𝐴 is diagonalizable. If the eigenvalues are not 

distinct, then 𝐴 may or may not be diagonalizable depending on whether 𝐴 has n linearly independent 

eigenvectors. 

4)  If 𝐴 is diagonalizable, then 𝐴can be factored into a product. 

Example:  

 a) Show that the following matrix A is diagonalizable. 
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 b) Find a diagonal matrix D that is similar to A. 

Let 𝐴 = [
2 −3
2 −5

]    

The eigenvalues of A are λ1 = 1 and λ2 = −4 and the corresponding eigenvectors are 𝑝1 =

[3 1]𝑇 and 𝑝2 = [1 2]𝑇 Then 𝑃 = [
3 1
1 2

] and 𝐷 = [
1 0
0 −4

] 

It follows that,  𝑃−1𝐴𝑃 =
1

5
[

2 −1
−1 3

] [
2 −3
2 −5

] [
3 1
1 2

] 

                                      = [
1 0
0 −4

] 

                                       = 𝐷 

And        𝑃𝐷𝑃−1 = [
3 1
1 2

] [
1 0
0 4

] [

2

5

−1

5
−1

5

3

5

] = [
2 −3
2 −5

] = 𝐴 

 

 


