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MODULE-2 

PARTIAL DIFFERENTIAL EQUATIONS 

Contents: 

 
Solution of PDE’s using Finite difference method  

• Introduction to Second order PDE. 

• General form of second order PDE. 

• Classification of second order PDE. 

• Solution of one-dimensional heat equation using Schmidt method. 

• One dimensional wave equation using explicit method. 

• Solution of two-dimensional Laplace equation. 

 

(RBT Levels: L1, L2 & L3) 

 

Learning Objectives:    

• This course aims to develop a systematic understanding of partial differential equations and 

enhance the application of these equations in solving engineering problems. Additionally, it 

will improve the ability to perform mathematical computations of the learned concepts using 

MATLAB. 

Module Outcomes: - After Completion of this module, student will be able to 

• Illustrate the knowledge of fundamental concepts of Partial differential equations. 

• Apply suitable techniques to solve given engineering and scientific problems related to 

Partial differential equations based on the acquired knowledge. 

• Analyze mathematical solutions of engineering and scientific problems related to 

Multivariable calculus, Partial differential equations. 
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Imagine you're baking a delicious pizza, and you are monitoring the temperature at a single point on your 

pizza (say, the center) over time 

 

Which differentiation you use here? ODE or PDE? 

 

If the temperature of the pizza changes at a specific point over time without considering spatial temperature 

variations across the pizza, you would employ an Ordinary Differential Equation (ODE) to model this 

scenario 

Now, let's make it a bit more advanced! Instead of just looking at the middle, what if we want to see how 

hot or cold the whole pizza is? The temperature changes depending on both the time and where you're 

checking on the pizza 

To capture this spatial variation, we need a first-order Partial Differential Equation (PDE). Here, 

temperature (T) is a function of both time (t) and position (x, y). 

Rate of heat movement in the sideways and up-down directions: 

This relies on how easily heat moves through the pizza dough 

(thermal diffusivity - how fast heat spreads) and how temperature 

changes along the sides (𝑇𝑥)and top-bottom (𝑇𝑦)of the pizza. 

Heat movement helps to spread the temperature throughout the 

pizza. 

 

But what about the movement of heat across the entire pizza? 

That's where the second-order PDE comes in. It goes beyond 

"how fast" by explaining how and why the temperature changes: 

• It considers not just the temperature at the center, but also the temperatures at its neighboring points 

(like edges closer to the heating element). 

• It accounts for how easily heat can move between these points depending on the pizza's ingredients 

and thickness. 

The equation captures how these two things work together to change the temperature over time. it's 

basically a rule that says: 

 "The change in temperature at any point depends on how much hotter or cooler its neighbours are, and 

how quickly heat can move between them." 

Why Second-Order Matters. The second-order PDE would include the second set of changes in 

temperature concerning 𝑥 , (𝑇𝑥𝑥) and y, (𝑇𝑦𝑦). These parts show how fast the heat spreads inside the 

pizza 

Temperature (T): This represents the actual temperature at a specific point within the pizza dough. 
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Position (x and y): These variables indicate the location within the pizza dough where the temperature 

is being measured. Imagine a grid laid over your pizza; x and y would correspond to the coordinates of a 

particular point on that grid. 

𝑻𝒙: This is the partial derivative of T with respect to x. It tells you how quickly the temperature changes 

as you move a small distance in the x-direction (across the pizza) at a specific point (considering y 

remains constant). 

𝑻𝒚: This is the partial derivative of T with respect to y. It tells you how quickly the temperature changes 

as you move a small distance in the y-direction (up and down the pizza) at a specific point (considering 

x remains constant). 

𝑻𝒙𝒙: This is the partial derivative of 𝑇𝑥 with respect to x [This is the second-order partial derivative of 

T with respect to x]. It essentially captures the rate of change of the temperature gradient in the x-

direction. It tells you how quickly the change in temperature (𝑇𝑥) is varying across the pizza in the x-

direction. 

𝑻𝒚𝒚: This is the partial derivative of 𝑇𝑦 with respect to y [This is the second-order partial derivative 

of T with respect to y]. It represents the rate of change of the temperature gradient in the y-direction. It 

tells you how quickly the change in temperature (𝑇𝑦) is varying across the pizza in the y-direction. 

The PDE (Partial Differential Equation) that models the temperature distribution in the pizza dough 

can be expressed,  

𝜕𝑇

𝜕𝑡
= 𝛼 (

𝜕2𝑇

𝜕𝑥2
+

𝜕2𝑇

𝜕𝑦2
) 

• 𝑇(𝑥, 𝑦, 𝑡) is the temperature at a position (x,y) in a time t. 

• α is the thermal diffusivity constant, which characterizes how fast heat diffuses through the pizza 

dough. 

𝜕2𝑇

𝜕𝑥2
=?       

𝜕2𝑇

𝜕𝑦2
=? 

Why are 𝑻𝒙𝒙 and 𝑻𝒚𝒚 important in the second-order PDE? 

The first-order PDE with 𝑇𝑥 and 𝑇𝑦 describes the general flow of heat, While the second-order PDE 

with 𝑇𝑥𝑥 and 𝑇𝑦𝑦 gives a more detailed description of how quickly that heat flow is changing at different 

spots within the pizza, 
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General Form of Second order PDE 

 

We know that a partial differential equation is an equation that contains partial derivatives. In 

contrast to ODE’s, where the unknown function depends only on one variables, in PDEs, the 

unknown function depends on several variables (like temperature 𝑢(𝑥, 𝑡) depends both on location 

𝑥 and time 𝑡) 

For the notational simplicity we use  

𝑢𝑡 =
∂𝑢

∂𝑡
; 𝑢𝑥 =

∂𝑢

∂𝑥
; 𝑢𝑥𝑥 =

∂2𝑢

∂𝑥2. 

 The unknown function 𝑢 always depends on more than one variable. The variable 𝑢 is called 

dependent variables, whereas the ones w differentiate with respect to are called independent 

variables.  

Ex:         𝑢𝑡 = 𝑢𝑥𝑥 

That the dependent variables 𝑢(𝑥, 𝑡) is a function of two independent variables 𝑥 and  𝑡, whereas in 

the equation    𝑢𝑡 = 𝑢𝑟𝑟 +
1

𝑟
𝑢𝑟 +

1

𝑟2 𝑢θθ 

𝑢(𝑟, θ, 𝑡) depends on 𝑟, 𝜃 and t.  

The order of PDE is the order of highest partial derivative in the equation. 

Partial differential equations are either linear or nonlinear. In the linear ones, the dependent variable 

u and all its derivatives appear in a linear fashion (they are not multiplied together or squared, for 

ex- ample). More precisely, a second-order linear equation in two variables is an equation of the 

form 

 The general linear partial differential equation of the second order on two independent variable is of 

the form, 

𝐴(𝑥, 𝑦)
∂2𝑢

∂𝑥2
+ 𝐵(𝑥, 𝑦)

∂2𝑢

∂𝑥 ∂𝑦
+ 𝐶(𝑥, 𝑦)

∂2𝑢

∂𝑦2
+ 𝐷(𝑥, 𝑦)

∂𝑢

∂𝑥
+ 𝐸(𝑥, 𝑦)

∂𝑢

∂𝑦
+ 𝐹𝑢 = 𝐺 

 

(Or) 

 

𝐴
𝜕2𝑢

𝜕𝑥2
+ 𝐵

𝜕2𝑢

𝜕𝑥𝜕𝑦
+ 𝐶

𝜕2𝑢

𝜕𝑦2
+ 𝐷

∂𝑢

∂𝑥
+

∂𝑢

∂𝑦
+ 𝐹𝑢 = 𝐺                      (i) 

 

Where A,B,C,D,E,F and G can be constants or given functions of 𝑥 and 𝑦. If 𝐺 = 0 then, (i) is called 

Homogeneous otherwise it is called nonhomogeneous. 

This is classified into  

 

1. Elliptic PDE’s: If 𝐵2 − 4𝐴𝐶 < 0, the PDE is elliptic. These PDEs are characterized by their 

smooth and continuous solutions. They are often associated with problems involving steady-

state or equilibrium conditions. 

Properties: 

• Solutions exhibit no sudden changes or discontinuities. 
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• Boundary conditions are specified on the entire boundary of the domain. 

• They are used to model problems such as heat conduction, electrostatics, and steady-

state fluid flow. 

 

2. Parabolic PDE’s: If 𝐵2 − 4𝐴𝐶 = 0 the PDE is parabolic. PDEs involve both time and space 

variables and are characterized by their unique initial or boundary conditions. 

Properties: 

• Solutions evolve from an initial condition over time. 

• They are often associated with problems involving heat diffusion, time-dependent 

processes, or diffusion-reaction equations. 

• Boundary conditions are specified at one end of the domain or at initial time. 

 

3. Hyperbolic PDE’s: If 𝐵2 − 4𝐴𝐶 > 0the PDE is hyperbolic. In this case, the solutions 

exhibit wave-like behavior, with disturbances propagating along characteristic curves.  

Properties: 

• Solutions exhibit wave-like behavior and can develop shocks or discontinuities. 

• They are often associated with problems involving wave propagation, such as sound 

waves, electromagnetic waves, or fluid flow with shocks. 

• Boundary conditions are specified along characteristic lines or surfaces. 

Problems: 

 

 
 Classify the following equations: 

1) 
𝜕2𝑢

𝜕𝑥2 + 4
𝜕2𝑢

𝜕𝑥𝜕𝑦
+ 4

𝜕2𝑢

𝜕𝑦2 −
𝜕𝑢

𝜕𝑥
+ 2

𝜕𝑢

𝜕𝑦
= 0 

Ans: Comparing the equation with (1) above, we find that, 

𝐴 = 1; 𝐵 = 4; 𝐶 = 4 

∴ 𝐵2 − 4𝐴𝐶 = 42 − (4 ∗ 1 ∗ 4)=0 

So the equation is Parabolic. 

 

 

Some of the Well Knows PDE’s 

• 𝒖𝒕 = 𝒖𝒙𝒙   (Heat equation in one dimension) 

• 𝒖𝒕 = 𝒖𝒙𝒙 + 𝒖𝒚𝒚  (heat equation in two dimensions) 

• 𝑢𝑟𝑟 +
1

𝑟
𝑢𝑟 +

1

𝑟2 𝑢𝜃𝜃 = 0 (Laplace’s Equation in polar form) 

• 𝒖𝒕𝒕 = 𝒖𝒙𝒙 (one dimensional wave Equation) 

 

Practice problems: 
      Examine the following second-order PDE, Classify it as elliptic, parabolic, or hyperbolic, providing a 

brief justification based on its coefficients 

1) 𝑥2 𝜕2𝑢

𝜕𝑥2
+ (1 − 𝑦2)

𝜕2𝑢

𝜕𝑦2
= 0, −∞ < 𝑥 < ∞; −1 < 𝑦 < 1 
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Ans Ellipse , Parabola if 𝑥 = 0 

2) (1 + 𝑥2)
𝜕2𝑢

𝜕𝑥2
+ (5 + 2𝑥2)

𝜕2𝑢

𝜕𝑥𝜕𝑡
+ (4 + 𝑥2)

𝜕2𝑢

𝜕𝑡2
= 0 

Ans: 𝐵2 − 4𝐴𝐶 = 9 > 0 Hyperbolic 

3) In which parts of the (x,y) plane is the following equation ? 

∂2𝑢

∂𝑥2
+

∂𝑢

∂𝑥 ∂𝑦
+ (𝑥2 + 4𝑦2)

∂2𝑢

∂𝑦2
= 2𝑠𝑖𝑛(𝑥𝑦) 

Ans: Outside the Ellipse, 
𝑥2

(0.5)2 +
𝑦2

(0.25)2 = 1 

4) 
∂2𝑢

∂𝑥2
+ 2

∂2𝑢

∂𝑥 ∂𝑦
− 3

∂2𝑢

∂𝑦2
= 0. 

5) For a second-order linear PDE of the form 𝐴
𝜕2𝑢

𝜕𝑥2 + 𝐵
𝜕2𝑢

𝜕𝑥𝜕𝑦
+ 𝐶

𝜕2𝑢

𝜕𝑦2 + 𝐷
∂𝑢

∂𝑥
+ 𝐸

∂𝑢

∂𝑦
+ 𝐹𝑢 = 𝐺   

Where A,B,C,D, E and F are constants, explain how you would determine its classification. Use the 

discriminant 𝐵2 − 4𝐴𝐶  in your explanation. 

 

6) Which type of second-order PDE represents steady-state phenomena? 

7) What kind of physical processes does a hyperbolic second-order PDE typically model? 

8) What kind of physical processes does a parabolic second-order PDE typically model? 

 

Finite Difference Approximation 
 

Finite difference approximation is a numerical method used to approximate solutions to differential 

equations, particularly partial differential equations (PDEs). It works by dividing the problem's area into a 

grid and estimating the changes in the unknown function at each point on the grid. 

Differential equations are powerful tools for modeling physical phenomena but analytical solutions are 

often difficult or impossible to find, especially for complex problems. Finite difference approximation 

provides a practical way to obtain numerical solutions to these equations by discretizing(refer to the process 

of dividing a continuous domain or variable into discrete intervals or points) the domain of the problem and 

approximating the derivatives of the unknown function at discrete points. 

At the heart of finite difference approximation is the concept of discretization. Instead of considering the 

function and its derivatives as continuous functions, we divide the domain of the problem into a grid of 

discrete points in space and time. This allows us to approximate the derivatives of the function at each grid 

point using finite difference formulas. 

 

Difference Operators: 
Finite difference formulas are used to approximate the derivatives of the unknown function at each grid 

point. There are several types of finite difference operators, including forward, backward, and central  

 differences. These operators approximate the derivative at a point using values of the function at neighboring     

 points in the grid. 

 

Boundary Conditions: 
Boundary conditions are essential constraints that must be applied at the edges of the grid to ensure that the 

numerical solution remains consistent with the physical problem being modeled.  
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Consider a rectangular region 𝑅 in the 𝑥 − 𝑦 plane. Divide the region into a rectangular network of sides 

Δ𝑥 = ℎ and Δ𝑦 = 𝑘 as shown in below fig. The points of intersection of dividing lines are called mesh 

points, nodal points or grid points. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                Then we have the finite difference approximation for the partial derivatives in 𝑥 − direction is 

𝑢𝑥(𝑥, 𝑦) =
∂𝑢

∂𝑥
=

𝑢(𝑥 + ℎ, 𝑦) − 𝑢(𝑥, 𝑦)

ℎ
 

𝑢𝑥𝑥(𝑥, 𝑦) =
∂2𝑢

∂𝑥2
=

𝑢(𝑥 − ℎ, 𝑦) − 2𝑢(𝑥, 𝑦) + 𝑢(𝑥 + ℎ, 𝑦)

ℎ2
 

Similarly we have the approximation for derivatives w.r.t t y: 

𝑢𝑦(𝑥, 𝑦) =
𝜕𝑢

𝜕𝑦
=

𝑢(𝑥, 𝑦 + 𝑘) − 𝑢(𝑥, 𝑦)

𝑘
 

𝑢𝑦𝑦(𝑥, 𝑦) =
𝜕2𝑢

𝜕𝑦2
=

𝑢(𝑥, 𝑦 − 𝑘) − 2𝑢(𝑥, 𝑦) + 𝑢(𝑥, 𝑦 + 𝑘)

𝑘2
 

Above equations can be written in terms of 𝑖 and 𝑗 as follows, 

𝑢𝑥(𝑥, 𝑦) =
∂𝑢

∂𝑥
=

𝑢𝑖+1,𝑗 − 𝑢𝑖,𝑗

ℎ
 

𝑢𝑥𝑥(𝑥, 𝑦) =
∂2𝑢

∂𝑥2
=

𝑢𝑖−1,𝑗 − 2𝑢𝑖,𝑗 + 𝑢𝑖+1,𝑗

ℎ2
 

𝑢𝑦(𝑥, 𝑦) =
𝜕𝑢

𝜕𝑦
=

𝑢𝑖,𝑗+1 − 𝑢𝑖,𝑗

𝑘
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𝑢𝑦𝑦(𝑥, 𝑦) =
𝜕2𝑢

𝜕𝑦2
=

𝑢𝑖,𝑗−1 − 2𝑢𝑖,𝑗 + 𝑢𝑖,𝑗+1

𝑘2
 

 

 

Solution of one-dimensional heat equation using Schmidt method: 

 

Consider One dimensional Heat equation 
∂𝑢

∂𝑡
= 𝑐2 ∂2𝑢

∂𝑥2
 

Where 𝑐2 =
𝜆

𝑠ρ
 (Where s is the specific heat of the material, λ is the thermal conductivity, 𝝆 is the density) 

Thermal Conductivity  𝝀: 

   - Thermal conductivity 𝝀  is a measure of a material's ability to conduct heat. It indicates how easily heat 

can pass through the material. 

Specific Heat  𝒔 : 

   - Specific heat 𝒔 is the amount of heat required to raise the temperature of a unit mass of the substance by 

one degree Celsius. 

Density  𝝆 : 

   - Density 𝜌 is the mass per unit volume of the material. 

   - It represents how much mass is contained in each volume of the substance. 

In the one-dimensional heat equation, these parameters are combined to form the thermal diffusivity 𝑐2 =
𝜆

𝑠𝜌
 ,  which characterizes how quickly heat diffuses through the material. The values of these parameters 

depend on the specific properties of the material under consideration. 

 

The solution of this equation is temperature function u(x, t) which is defined for values of x from 0 to 𝑙 and 

for values of time t from 0 to ∞. The solution is not defined in a closed domain but advances in an open-

ended region from initial values, satisfying the prescribed boundary conditions. 

Consider a rectangular mesh in the 𝑥 − 𝑡 plane with spacing ℎ along 𝑥 direction and 𝑘 along time 𝑡 

direction. Denoting a mesh point (𝑥, 𝑡) = (𝑖ℎ, 𝑗𝑘) , 

 
𝜕𝑢

𝜕𝑡
=

𝑢𝑖,𝑗+1 − 𝑢𝑖,𝑗

𝑘
 

And 

∂2𝑢

∂𝑥2
=

𝑢𝑖−1,𝑗 − 2𝑢𝑖,𝑗 + 𝑢𝑖+1,𝑗

ℎ2
 

Substituting in Heat equation, we obtain 

 

𝒖𝒊,𝒋+𝟏 = 𝛂𝒖𝒊−𝟏,𝒋 + (𝟏 − 𝟐𝛂)𝒖𝒊,𝒋 + 𝛂𝒖𝒊+𝟏,𝒋 

Where α =
𝑘𝑐2

ℎ2  is the mesh ratio parameter, 

Which is called Schmidt Explicit formula, and which is valid only for 0 ≤ α ≤
1

2
. 

Note: Schmidt method is the relation between the function values and two time levels 𝑗 and 𝑗 + 1, so it is 

called two level formula. 

If α =
1

2
 then the above formula will be 
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𝒖𝒊,𝒋+𝟏 =
𝟏

𝟐
(𝒖𝒊−𝟏,𝒋 + 𝒖𝒊+𝟏,𝒋) 

 

It is called Bendre-Schmidt Explicit formula. 

Example:  Solve the equation 
𝛛𝒖

𝛛𝒕
=

𝛛𝟐𝒖

𝛛𝒙𝟐 

Subject to the conditions 𝒖(𝒙, 𝟎) = 𝒔𝒊𝒏𝛑𝒙, 𝟎 ≤ 𝒙 ≤ 𝟏; 𝒖(𝟎, 𝒕) = 𝒖(𝟏, 𝒕) = 𝟎; Carry out 

computations for the two levels, taking 𝒉 =
𝟏

𝟑
; 𝒌 =

𝟏

𝟑𝟔
. 

Solution: Here 𝑐2 = 1, ℎ =
1

3
, 𝑘 =

1

36
 so that α =

𝑘𝑐2

ℎ2
=

1

4
. 

Also 𝑢1,0 = 𝑠𝑖𝑛
𝑝𝑖

3
=

√3

2
, 𝑢2,0 = 𝑠𝑖𝑛

2π

3
=

√3

2
 and all other boundary values are zero as shown in fig. 

We have the Schmidt formula, 

𝒖𝒊,𝒋+𝟏 = 𝛂𝒖𝒊−𝟏,𝒋 + (𝟏 − 𝟐𝛂)𝒖𝒊,𝒋 + 𝛂𝒖𝒊+𝟏,𝒋 

Becomes, 

𝒖𝒊,𝒋+𝟏 =
𝟏

𝟒
[𝒖𝒊−𝟏,𝒋 + 𝟐𝒖𝒊,𝒋 + 𝛂𝒖𝒊+𝟏,𝒋] 

 

For 𝑗 = 𝟎;  𝒊 = 𝟏, 𝟐 

  

𝒖𝟏,𝟏 =
𝟏

𝟒
[𝒖𝟎,𝟎 + 𝟐𝒖𝟏,𝟎 + 𝒖𝟐,𝟎] =

𝟏

𝟒
(𝟎 + 𝟐 ∗

√𝟑

𝟐
+

√𝟑

𝟐
) = 𝟎. 𝟔𝟒𝟗𝟓 

𝒖𝟐,𝟏 =
𝟏

𝟒
[𝒖𝟏,𝟎 + 𝟐𝒖𝟐,𝟎 + 𝒖𝟑,𝟎] =

𝟏

𝟒
(

√𝟑

𝟐
+ 𝟐 ∗

√𝟑

𝟐
+ 𝟎) = 𝟎. 𝟔𝟒𝟗𝟓 

For 𝑗 = 1;  𝑖 = 1,2  

𝒖𝟏,𝟐 =
𝟏

𝟒
[𝒖𝟎,𝟏 + 𝟐𝒖𝟏,𝟏 + 𝒖𝟐,𝟏] = 𝟎. 𝟒𝟖𝟕𝟏 

𝒖𝟐,𝟐 =
𝟏

𝟒
[𝒖𝟏,𝟏 + 𝟐𝒖𝟐,𝟏 + 𝒖𝟑,𝟏] = 𝟎. 𝟒𝟖𝟕𝟏 

 

     j          

i 

0 1 2 

0 0 0 0 

1 √𝟑

𝟐
 

𝟎. 𝟔𝟒𝟗𝟓 𝟎. 𝟒𝟖𝟕𝟏 

2 √𝟑

𝟐
 

𝟎. 𝟔𝟒𝟗𝟓 𝟎. 𝟒𝟖𝟕𝟏 

3 0 0 0 

 

 

Example: Determine the values of 𝒖(𝒙, 𝒕) satisfying the parabolic equation 
𝛛𝒖

𝛛𝒕
= 𝟒

𝛛𝟐𝒖

𝛛𝒙𝟐 and the 

boundary conditions 𝒖(𝟎, 𝒕) = 𝟎 = 𝒖(𝟖, 𝒕) and 𝒖(𝒙, 𝟎) = 𝟒𝒙 −
𝟏

𝟐
𝒙𝟐 at the points 𝒙 = 𝒊; 𝒊 =

𝟎, 𝟏, 𝟐, 𝟑, … , 𝟖. And 𝒕 =
𝟏

𝟖
𝒋: 𝒋 = 𝟎, 𝟏, 𝟐, … , 𝟓. 
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Solution: Here 𝑐2 = 4, ℎ = 1 and 𝑘 =
1

8
. Then α =

𝑐2𝑘

ℎ2 =
1

2
 

∴ we have Bendre Schmidt’s formula, 

𝒖𝒊,𝒋+𝟏 =
𝟏

𝟐
(𝒖𝒊−𝟏,𝒋 + 𝒖𝒊+𝟏,𝒋) 

Now since 𝑢(0, 𝑡) = 0 = 𝑢(8, 𝑡) 

∴ 𝑢0,𝑖 = 0 and 𝑢8,𝑗 = 0 for all values of 𝑗, i.e., the entries in the first and last row are zero. Since  

𝑢(𝑥, 0) = 4𝑥 −
1

2
𝑥2 

𝑢𝑖,0 = 4𝑖 −
1

2
𝑖2 = 0, 3.5, 6, 7.5, 8, 7.5, 6, 3.5;  

For 𝑖 = 0,1,2,3,4,5,6,7 𝑎𝑡 𝑡 = 0 

These are the entries of the first column. 

 

 

 

              i 

j              

0 1 2 3 4 5 6 7 8 

0 0 3.5 6.0 7.5 8.0 7.5 6.0 3.5 0 

1 0 3.0 5.5 7.0 7.5 7.0 5.5 3.0 0 

2 0 2.75 5.00 6.50 7.00 6.50 5.00 2.75 0 

3 0 2.50 4.63 6.00 6.50 6.00 4.63 2.50 0 

4 0 2.313 4.250 5.563 6.000 5.563 4.250 2.313 0 

5 0 2.125 3.938 5.125 5.563 5.125 3.938 2.125 0 

 

 

Example: Determine the temperature distribution of a long, thin rod with a length of 10 𝑐𝑚. with thermal 

conductivity λ = 0.49 𝑐𝑎𝑙/(𝑠. 𝑐𝑚. ℃),  ℎ = 2𝑐𝑚, 𝑘 = 0.1 𝑆.  At 𝑡 = 0, the temperature of the rod is zero 

and the boundary conditions are fixed for all times at 𝑇(0) = 100℃ and 𝑇(10) = 50℃.  Note that the rod 

is aluminium with specific heat 𝑠 = 0.2174 𝑐𝑎𝑙/𝑔. ℃ and ρ = 2.7𝑔/𝑐𝑚3. Carry out the temperature 

distribution at all points up to t=0.2s. 

Solution: Given Thermal conductivity   𝛌 = 0.49 𝑐𝑎𝑙/(𝑠. 𝑐𝑚. ℃),  ℎ = 2 𝑐𝑚, 𝑘 = 0.1 𝑆  

𝑐2 =
λ

𝑠ρ
;  𝑐2 =

0.49

0.2174∗2.7
= 0.8348 𝑐𝑚2/𝑠  

α =
𝑘𝑐2

ℎ2
=

0.1∗0.8348

22
=0.0209 

When  𝑡 = 0 the temperatures [𝑢0,0, 𝑢0,1, 𝑢0,2, ] =0,  

When  𝑥 = 0 the temperatures [𝑢0,0, 𝑢0,1, 𝑢0,2] =100; i.e., T(0)=100 

When  𝑥 = 10 the temperatures [𝑢5,0, 𝑢5,1, 𝑢5,2] =50,  ; i.e., T(10)=50 
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We have the Schmidt formula, 

𝒖𝒊,𝒋+𝟏 = 𝛂𝒖𝒊−𝟏,𝒋 + (𝟏 − 𝟐𝛂)𝒖𝒊,𝒋 + 𝛂𝒖𝒊+𝟏,𝒋 

When i=1,j=0 (i.e at x=2 and t=0.1) 

𝒖𝟏,𝟏 = 𝛂𝒖𝟎,𝟎 + (𝟏 − 𝟐𝛂)𝒖𝟏,𝟎 + 𝛂𝒖𝟐,𝟎 

𝒖𝟏,𝟏 = 𝟎. 𝟎𝟐𝟎𝟗(𝟏𝟎𝟎 + (𝟏 − 𝟐 ∗ 𝟎. 𝟎𝟐𝟎𝟗) ∗ 𝟎 + 𝟎. 𝟎𝟐𝟎𝟗 ∗ 𝟎 = 𝟐. 𝟎𝟗 

Simillarly,  

When 𝑥 = 2, 4, ,6 𝑎𝑛𝑑 8  

𝑢2,1 = 0; 𝑢3,1 = 0; 𝑢4,1 = 1.0438 

When t=0.2s , 

𝑢1,2 = 4.0878; 𝑢2,2 = 0.04352; 𝑢3,2 = 0.04788; 𝑢4,2 = 2.0439 

 

 

        j               

i 

0 1 2 

0 100 100 100 

1 0 2.09 4.0878 

2 0 1.0438 0.04352 

3 0 1.0438 0.04788 

4 0 1.0438 2.0439 

5 50 50 50 

 

Practice Problems: 

1. A long, thin rod with a length of 10 𝑐𝑚 and the following values thermal conductivity λ =

0.49 𝑐𝑎𝑙/(𝑠. 𝑐𝑚. ℃),  ℎ = 2𝑐𝑚, 𝑘 = 0.1𝑆.  At 𝑡 = 0, the temperature of the rod is zero and the 

boundary conditions are fixed for all times at 𝑇(0) = 100℃ and 𝑇(10) = 50℃.  Note that the 

rod is aluminium with specific heat 𝑠 = 0.2174 𝑐𝑎𝑙/𝑔. ℃ and ρ = 2.7𝑔/𝑐𝑚3. 

a. Can you classify the above scenario into appropriate class of partial differential equations?  

Justify your answer. Write the PDE of the above question belongs to. 
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b. Identify the function involved in the given problem, clearly indicate the dependent and 

independent variables. 

c. Give two applications of above class of PDE 

2. Solve the equation 
∂𝑢

∂𝑡
=

∂2𝑢

∂𝑥2  Subject to the conditions 𝑢(𝑥, 0) = 𝑠𝑖𝑛𝜋𝑥, 0 ≤ 𝑥 ≤ 1; 𝑢(0, 𝑡) =

𝑢(1, 𝑡) = 0; Carry out computations for the levels, taking ℎ =
1

3
; 𝑘 =

1

36
. 

3. Determine the values of 𝑢(𝑥, 𝑡) satisfying the parabolic equation 
∂𝑢

∂𝑡
= 4

∂2𝑢

∂𝑥2 and the boundary 

conditions 𝑢(0, 𝑡) = 0 = 𝑢(5, 𝑡) and 𝑢(𝑥, 0) = 4𝑥 −
1

2
𝑥2 at the points 𝑥 = 𝑖; 𝑖 = 0,1,2,3, … ,5. 

And 𝑡 =
1

8
𝑗: 𝑗 = 0,1,2, … ,5. 

4. Solve the boundary value problem 𝑢𝑡 = 𝑢𝑥𝑥 under the conditions 𝑢(0, 𝑡) = 𝑢(1, 𝑡) = 0 and 

𝑢(𝑥, 0) = 𝑠𝑖𝑛𝜋𝑥, 0 ≤ 𝑥 ≤ 1 using Schmidt method. Take h=0.2 and 𝛼 =
1

2
. 

5. Solve the equation 2
∂𝑢

∂𝑡
=

∂2𝑢

∂𝑥2 when 𝑢(0, 𝑡) = 𝑢(4, 𝑡) = 0 and 𝑢(𝑥, 0) = 𝑥(4 − 𝑥), taking ℎ = 1 

, α =
1

2
 find the values up to t=5. 

6.  Solve the equation 
∂𝑓

∂𝑡
−

∂2𝑓

∂𝑥2 = 0; 𝑓(0, 𝑡) = 𝑓(5, 𝑡) = 0, 𝑓(𝑥, 0) = 𝑥2(25 − 𝑥2); find the values 

of 𝑓 for 𝑥 = 𝑖ℎ(𝑖 = 0,1,2, … ,5) and 𝑡 = 𝑗𝑘(𝑗 = 0,1, … ,6) with ℎ = 1 and 𝑘 =
1

2
, using explicit 

method. 

7. Determine the temperature distribution of a long, thin rod with a length of 10 𝑐𝑚 with thermal 

conductivity λ = 0.49 𝑐𝑎𝑙/(𝑠. 𝑐𝑚. ℃),  ℎ = 2𝑐𝑚, 𝑘 = 0.1𝑆.  At 𝑡 = 0, the temperature of the rod 

is zero and the boundary conditions are fixed for all times at 𝑇(0) = 100℃ and 𝑇(10) = 50℃.  

Note that the rod is aluminium with specific heat 𝑠 = 0.2174 𝑐𝑎𝑙/𝑔. ℃ and ρ = 2.7𝑔/𝑐𝑚3. 

Carry out the temperature distribution at all points up to t=0.2s. 

8. Determine the temperature distribution of a long, thin rod with a length of 15 𝑐𝑚 with thermal 

conductivity λ = 0.58 𝑐𝑎𝑙/(𝑠. 𝑐𝑚. ℃),  ℎ = 3𝑐𝑚, 𝑘 = 0.15 𝑆.  At 𝑡 = 0, the temperature of the 

rod is zero and the boundary conditions are fixed for all times at 𝑇(0) = 120℃ and 𝑇(15) =

60℃.  Note that the rod is aluminium with specific heat 𝑠 = 0.0924 𝑐𝑎𝑙/𝑔. ℃ and ρ =

8.9𝑔/𝑐𝑚3. Carry out the temperature distribution at all points up to t=0.3s. 

9. Determine the temperature distribution of a long, thin rod with a length of 12 𝑐𝑚 with thermal 

conductivity λ = 0.52 𝑐𝑎𝑙/(𝑠. 𝑐𝑚. ℃),  Δ𝑥 = 3𝑐𝑚, Δ𝑡 = 0.2 𝑆.  At 𝑡 = 0, the temperature of the 

rod is zero and the boundary conditions are fixed for all times at 𝑇(0) = 90℃ and 𝑇(12) = 45℃.  

Note that the rod is aluminium with specific heat 𝑠 = 0.093 𝑐𝑎𝑙/𝑔. ℃ and ρ = 8.5𝑔/𝑐𝑚3. Carry 

out the temperature distribution at all points up to t=0.6s. 
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Solution of one-dimensional wave equation using explicit method: 

The best example of hyperbolic partial differential equations is 𝑢𝑡𝑡 = 𝑐2𝑢𝑥𝑥. 

Here 𝑢𝑡𝑡  represents the acceleration of the wave. 𝑢𝑥𝑥 represents how the wave changes spatially. c is the 

wave speed which indicates how fast the wave propagates through the medium. 

Its solution is 𝑢(𝑥, 𝑡)  represents the displacement of the wave at position 𝑥 and time 𝑡. defined for values of 

𝑥 from 0 to 𝑙 and for 𝑡 from 0 to ∞, satisfying the initial and boundary conditions. 

Note: In the case of hyperbolic equations we have two initial conditions and two boundary conditions. 

Such kinds of equations arise from convective type of problems in vibrations, wave mechanics and gas 

dynamics. 

We seek the numerical solution of the wave equation  
𝑢𝑡𝑡 = 𝑐2𝑢𝑥𝑥-----(1) 

Subject to the boundary conditions: 

𝑢(0, 𝑡) = 𝜑(𝑡)  -------(2) 

𝑢(𝑙, 𝑡) = 𝜓(𝑡)   -------(3) 

And the initial conditions: 

𝑢(𝑥, 0) = 𝑓(𝑥)  ------(4) 

𝑢𝑡(𝑥, 0) = 0  ---------(5) 

 
Consider a rectangular mesh in the 𝑥 − 𝑡 plane spacing ℎ along 𝑥 direction and 𝑘 along time 𝑡 direction. 

Denoting a mesh point (𝑥, 𝑡) = (𝑖ℎ, 𝑗𝑘) as simply 𝑖, 𝑗 we have 

𝑢𝑥𝑥 =
𝑢𝑖−1,𝑗−2𝑢𝑖,𝑗+𝑢𝑖+1,𝑗 

ℎ2   and  𝑢𝑡𝑡 =
𝑢𝑖,𝑗−1−2𝑢𝑖,𝑗+𝑢𝑖,𝑗+1 

𝑘2   

Substituting in wave equation we get 

∴ 𝑢𝑖,𝑗+1 = 2(1 − 𝛼2𝑐2)𝑢𝑖,𝑗 + 𝛼2𝑐2[𝑢𝑖−1,𝑗 + 𝑢𝑖+1,𝑗] − 𝑢𝑖,𝑗−1----(6) 

 

Where 𝛼 =
𝑘

ℎ
 is the mesh ratio  

The coefficient of 𝑢𝑖,𝑗 will vanish if 𝛼 =
1

𝑐
 𝑜𝑟 𝑘 =

ℎ

𝑐
 then equation (6) reduces to the form 

𝑢𝑖,𝑗+1 = 𝑢𝑖−1,𝑗 + 𝑢𝑖+1,𝑗 − 𝑢𝑖,𝑗−1-----(7) 

This is called the explicit formula for the solution of the wave equation.  
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Further we express the initial condition (4) involving partial derivative w.r.t t in terms of finite difference. 

We consider  

𝑢𝑡 =
1 

2𝑘
[𝑢𝑖,𝑗+1 − 𝑢𝑖,𝑗−1] 

Using equation (5) and taking 𝑗 = 0 then we get 𝑢𝑖,1 = 𝑢𝑖,−1 -----(8) 

Using (8) and putting 𝑗 = 0 then we get  𝑢𝑖,1 =
1 

2
[𝑢𝑖−1,0 + 𝑢𝑖+1,0] -----(9) 

Further 𝑢(0, 𝑡) and 𝑢(𝑙, 𝑡) = 0 means 𝑢0,𝑗 = 0 and 𝑢𝑙,𝑗 = 0 which implies that the values along the first 

column and last column are zero. 

𝑢(𝑥, 0) = 𝑓(𝑥) means 𝑢𝑖,0 = 𝑓(𝑥) gives the values of 𝑢 along the first row. 

Finally 𝑢𝑡(𝑥, 0) = 0 modified into the form (9) giving 𝑢𝑖,1 will give us the values of 𝑢 along the second 

row. These values will helps us to obtain the rest of the value of 𝑢 at the mesh points by the explicit 

formula (7). Thus we are able to determine 𝑢(𝑥, 𝑡) at all the interior mesh points. 

Note: 1. This provides an explicit scheme for the solution of the wave equation. 

2. For 𝛼 =  1/𝑐, the solution of (6) is stable and coincides with the solution of (1). 

3. For 𝛼 <  1/𝑐, the solution is stable but inaccurate. 

4. For 𝛼 >  1/𝑐, the solution is unstable. 

5. The formula (6) converges for 𝛼 ≤  1  i.e., 𝑘 ≤  ℎ. 

6. If  𝛼 = 1/c, the solution of the explicit formula is stable and accurate because the time steps are precisely 

matched with the speed of wave propagation (c), allowing the numerical method to accurately capture the 

behavior described by the wave equation. 

7. If 𝛼 < 1/c, the solution remains stable because the time steps are small enough to prevent the numerical 

solution from blowing up. However, since the time steps are larger relative to the speed of wave propagation 

(c), the solution becomes less accurate. This is because the numerical method may not capture the rapid 

changes in the wave behavior as effectively due to the larger time steps. 

8. If 𝛼 > 1/c the solution becomes unstable because the time steps are greater than the wave propagation 

speed (c). As a result, there is instability and divergence in the numerical solution, producing inaccurate 

findings. 

9. The explicit formula converges for 𝛼 ≤ 1 (k ≤ h), meaning that as long as the temporal step size (k) is less 

than or equal to the spatial step size (h), the numerical solution approaches the true solution of the wave 

equation as the step sizes approach zero. 

Example: Evaluate the pivotal values of the equation 𝒖𝒕𝒕 =  𝟏𝟔𝒖𝒙𝒙, taking 𝒉 = 𝟏 upto 𝒕 =  𝟏. 𝟐𝟓. 

The boundary conditions are 𝒖(𝟎, 𝒕) = 𝒖(𝟓, 𝒕) = 𝟎, 𝒖𝒕(𝒙, 𝟎) = 𝟎and 𝒖(𝒙, 𝟎) = 𝒙𝟐(𝟓– 𝒙). 

Solution: The wave equation in the standard form is  𝑢𝑡𝑡 = 𝑐2𝑢𝑥𝑥 

Here 𝑐2 = 16 or 𝑐 = 4. 

Since ℎ = 1,  we have 𝑘 =
ℎ

𝑐
=

1

4
= 0.25 

Now since 𝑢(0,  𝑡) =  𝑢(5,  𝑡) =  0,  ∴  𝑢0,𝑗 =  0 and 𝑢5,𝑗 =  0 for all values of j 

i.e., the entries in the first and last rows are zero. 

Since 𝑢(𝑥, 0) = 𝑥2(5– 𝑥) 
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∴  𝑢𝑖,0 =  𝑖2(5 –  𝑖) =  4,  12,  18,  16 for 𝑖 =  1,  2,  3,  4 at 𝑡 =  0. 

These are the entries for the first column. 

Since 𝑢𝑡(𝑥, 0) = 0 𝑢𝑖,1 = 𝑢𝑖,−1, 

We get 𝑢𝑖,1 =
1 

2
[𝑢𝑖−1, 0 + 𝑢𝑖+1,0] 

Taking 𝑖 =  1,  2,  3,  4 successively, we obtain 

𝑢1,1 =
1

2
(𝑢0,0 + 𝑢2,0) =

1

2
(0 + 12) = 6 

  

𝑢2,1 =
1

2
(𝑢1,0 + 𝑢3,0) =

1

2
(4 + 18) = 11 

  

𝑢3,1 =
1

2
(𝑢2,0 + 𝑢4,0) =

1

2
(12 + 16) = 14 

𝑢4,1 =
1

2
(𝑢3,0 + 𝑢5,0) =

1

2
(18 + 0) = 9 

These are the entries of the second column 

Putting 𝑗 =  1 in the explicit formula, we get 𝑢𝑖, 2 = 𝑢𝑖–1, 1 +  𝑢𝑖+1, 1 −  𝑢𝑖, 0 

Taking 𝑖 =  1,  2,  3,  4 successively, we obtain 

                        𝑢1, 2 =  𝑢0, 1 +  𝑢2, 1 −  𝑢1, 0    =  0 +  11 −  4 =  7  

            𝑢2, 2 = 𝑢1, 1 + 𝑢3, 1 − 𝑢2, 0       =  6 +  14 − 12 =  8 

            𝑢3, 2 =  𝑢2, 1 + 𝑢4, 1 −  𝑢3, 0      =  11 +  9 −  18 =  2 

            𝑢4, 2 = 𝑢3, 1 + 𝑢5,1 −  𝑢4,0       =  14 +  0 –  16 = − 2 

These are the entries of the third column. 

Similarly putting 𝑗 =  2,  3,  4 successively in the explicit formula, the entries of the fourth, fifth, and sixth 

columns are obtained. 

Hence the values of 𝑢𝑖, 𝑗 are as shown in the table below: 

𝒋 

𝒊. 

𝟎 𝟏 𝟐 𝟑 𝟒 𝟓 

𝟎 0 0 0 0 0 0 

𝟏 4 6 7 2 −9 −16 

𝟐 12 11 8 −2 −14 −18 

𝟑 18 14 2 −8 −11 −12 

𝟒 16 9 −2 −7 −6 −4 

𝟓 0 0 0 0 0 0 
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Example: The transverse displacement u of a point at a distance x from one end and at any time t of a 

vibrating string satisfies the equation 
𝝏𝟐𝒖

𝝏𝒕𝟐
 = 𝟒

𝝏𝟐𝒖

𝝏𝒙𝟐
, with boundary conditions 𝒖 =  𝟎 at 𝒙 =  𝟎, 𝒕 >  𝟎 

and 𝒖 =  𝟎 at 𝒙 =  𝟒, 𝒕 >  𝟎 and initial conditions 𝒖 = 𝒙(𝟒– 𝒙) and         
𝝏𝒖

𝝏𝒕
 =  𝟎, 𝟎 ≤  𝒙 ≤ 𝟒. Solve 

this equation numerically for one-half period of vibration, taking 𝒉 =  𝟏 and 𝒌 =  𝟏/𝟐. 

Solution: Here, 
ℎ

𝑘
=  2 =  𝑐. 

∴ The difference equation for the given equation is 

𝑢𝑖,𝑗+1 = 𝑢𝑖−1,𝑗 + 𝑢𝑖+1,𝑗 − 𝑢𝑖,𝑗−1 

which gives a convergent solution (since k < h). 

Now since 𝑢(0,  𝑡) =  𝑢(4,  𝑡) =  0, 

𝑢0,𝑗 =  0 and 𝑢4, 𝑗 = 0 for all values of 𝑗. 

i.e., the entries in the first and last rows are zero. 

Since 𝑢𝑥,0 = 𝑥(4– 𝑥), 

∴ 𝑢𝑖,0 =  𝑖(4 –  𝑖) =  3,  4,  3 for 𝑖 =  1,  2,  3 at 𝑡 =  0. 

These are the entries of the first column. 

Also 𝑢𝑡(𝑥,  0) =  0 becomes, 

1 

2𝑘
[𝑢𝑖,𝑗+1 − 𝑢𝑖,𝑗−1] = 0 

and taking 𝑗 = 0 then we get 𝑢𝑖,1 = 𝑢𝑖,−1 

Putting 𝑗 = 0 in the difference equation we obtain 𝑢𝑖,1 =
1 

2
[𝑢𝑖−1, 0 + 𝑢𝑖+1,0] 

Taking 𝑖 =  1,  2,  3 successively, we obtain 

𝑢1,1 =
1

2
(𝑢0,0 + 𝑢2,0) = 2 

𝑢2,1 =
1

2
(𝑢1,0 + 𝑢3,0) = 3 

𝑢3,1 =
1

2
(𝑢2,0 + 𝑢4,0) = 2 

These are the entries of the second column. 

Putting 𝑗 =  1 in the explicit formula, we get 𝑢𝑖, 2 = 𝑢𝑖–1, 1 +  𝑢𝑖+1, 1 −  𝑢𝑖, 0 

Taking 𝑖 =  1,  2,  3 successively, we obtain 

  𝑢1, 2 =  𝑢0, 1 +  𝑢2, 1 −  𝑢1, 0  =  0 + 3 –  3 = 0 

  𝑢2, 2 = 𝑢1, 1 + 𝑢3, 1 − 𝑢2, 0     =  2 +  2 − 4 =  0 

  𝑢3, 2 = 𝑢2, 1 + 𝑢4, 1 −  𝑢3, 0    =  3 +  0 − 3 =  0 

These are the entries of the third column and so on. 

Now the equation of the vibrating string of length 𝑙 is 𝑢𝑡𝑡 = 𝑐2𝑢𝑥𝑥 

  

∴  Its period of vibration 
2𝑙

𝑐
=

2×4

2
= 4𝑠𝑒𝑐     [∴ 𝑙 = 4 𝑎𝑛𝑑 𝑐 = 2] 

This shows that we have to compute 𝑢(𝑥, 0) up to 𝑡 =  2 
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i.e. Similarly we obtain the values of 𝑢𝑖,3 (fourth row) and 𝑢𝑖,4 (fifth row). Hence the values of 𝑢𝑖,𝑗 are as 

shown in the next table: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Practice Problems: 

1. A string of length 8 meters is fixed at both ends. At time t = 0, the string is plucked such that it 

forms a triangular shape with maximum displacement at the midpoint. Provided for the range 

0≤x≤8 and 0≤t≤2, with c=2 m/s, Δt=0.1 s, and Δx=0.5 m. 

a. Can you classify the above scenario into appropriate class of partial differential equations? 

Justify your answer. 

b. Identify the function involved in the given problem, clearly indicate the dependent and 

independent variables. 

c. Provide any two application of it. 

2. Find the solution of the initial boundary value problem: 
𝜕2𝑢

𝜕𝑡2 =
𝜕2𝑢

𝜕𝑥2  , 0 ≤ 𝑥 ≤ 1 subject to the initial 

conditions 𝑢(𝑥, 0) = 𝑠𝑖𝑛𝜋𝑥, 0 ≤ 𝑥 ≤ 1,
𝜕𝑢

𝜕𝑡
(𝑥, 0) = 0,0 ≤ 𝑥 ≤ 1 and the boundary conditions       

u(0, t) = 0, u(1, t) = 0, t > 0; by using the explicit scheme by taking h=0.2. 

3. Solve 𝑦𝑡𝑡  =  𝑦𝑥𝑥 up to t = 0.5 with a spacing of 0.1 subject to y(0, t) = 0, y(1, t) = 0, 𝑦𝑡(𝑥, 0) =  0 

and y(x, 0) = 10 + x(1 – x). 

4. The transverse displacement of a point at a distance x from one end and at any time t of a vibrating 

string satisfies the equation 
𝜕2𝑢

𝜕𝑡2
= 25

𝜕2𝑢

𝜕𝑥2
 with the boundary conditions u(0,t) = u(5, t) = 0 and the 

initial conditions 𝑢(𝑥, 0) = {
20𝑥 𝑓𝑜𝑟 0 ≤ 𝑥 < 1

5(5 − 𝑥) 𝑓𝑜𝑟 1 ≤ 𝑥 < 5
  and 𝑢𝑡(𝑥, 0) =  0. Solve this equation 

numerically for one-half period of vibration, taking h = 1, k = 0.2. 

5. . The transverse displacement u of a point at a distance 𝑥 from  one end and at any time 𝑡 of a 

vibrating string satisfies the equation 
𝜕2𝑢

𝜕𝑡2 = 4
𝜕2𝑢

𝜕𝑥2,  with boundary condition 𝑢(0, 𝑡) = 0 = 𝑢(4, 𝑡) 

              𝒋 

𝒊.               

𝟎 𝟏 𝟐 𝟑 𝟒 

𝟎 0 0 0 0 0 

𝟏 3 2 0 -2 -3 

𝟐 4 3 0 -3 -4 

𝟑 3 2 0 -2 -3 

𝟒 0 0 0 0 0 
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,t>0. for all t. Initial conditions u = x(4− x) for 0 ≤ x ≤ 4, and 
𝜕𝑢

𝜕𝑡
(𝑥, 0) = 0. Using the explicit 

method, numerically Determine the transverse displacement u(x,t) for 0 ≤ x ≤ 1 and 0 ≤ t ≤ 0.5 

seconds  y taking ℎ = 1 and 𝑘 =
1

2
. 

6. The transverse displacement u(x,t) of a guitar string of length L=1 meter satisfies the wave equation 

𝜕2𝑢

𝜕𝑡2 = 9
𝜕2𝑢

𝜕𝑥2, where u(x,t) represents the displacement at position x and time t. The string is fixed at 

both ends, i.e., u(0,t) = u(1,t) =0 for all t. Initially, the string is plucked to a triangular shape: u(x,0) 

= x(1− x) for 0 ≤ x ≤ 1, and 
𝜕𝑢

𝜕𝑡
(𝑥, 0) = 0. Using the explicit method, numerically solve for the 

transverse displacement u(x,t) for 0 ≤ x ≤ 1 and 0 ≤ t ≤ 0.5 seconds. 

 

 

Elliptic Equations 
 

The Laplace equation 
𝝏𝟐𝒖

𝝏𝒕𝟐  =
𝝏𝟐𝒖

𝝏𝒙𝟐 is an example of elliptic partial differential equations.  

The Laplace equation describes how a scalar field varies in space, with no sources or sinks of the field and it 

arises in steady-state flow and potential problems. The solution of this equations is a function u(x, y) which 

is satisfied at every point of a region R subject to certain boundary conditions specified on 

the closed curve C (Figure).  

In general, problems concerning steady  

viscous flow, equilibrium stresses 

in elastic structures etc., lead to elliptic 

type of equations. 

 

 

 

 

 

 

 

 

 

Numerical solution of the Laplace’s equation in two dimensions 
Laplace's equation in two dimensions is: 

𝝏𝟐𝒖

𝝏𝒕𝟐
 =

𝝏𝟐𝒖

𝝏𝒙𝟐
 ----(1) 

To solve Laplace's equation numerically using the finite difference method in a rectangular region R with 

known boundary conditions, we can discretize the domain into a grid of points and replace the derivatives in 

Laplace's equation with their finite difference approximations. Let's consider a rectangular region R divided 

into a network of square mesh with side length ℎ as shown in the figure  
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Replacing the derivatives in (1) by their difference approximations, we have 

𝑢𝑖,𝑗 =
1

4
[𝑢𝑖−1,𝑗 + 𝑢𝑖+1,𝑗 + 𝑢𝑖,𝑗+1 + 𝑢𝑖,𝑗−1]  ------(2) 

This is called the standard five point formula. This shows that the value of 𝑢 at any interior mesh point is 

the average of its values at four neighbouring points to the left, right, above and below which shown in the 

figure  

 

 

 

 

 

  

 

 

Note: 1. Since the Laplace equation remains invariant when the co-ordinates are rotated through an angle of 

45° we can also have the formula in the form  

𝑢𝑖,𝑗 =
1

4
[𝑢𝑖−1,𝑗 + 𝑢𝑖+1,𝑗−1 + 𝑢𝑖+1,𝑗+1 + 𝑢𝑖−1,𝑗−1]  ------(3) 

This shows that the value of 𝑢𝑖,𝑗 is the average of its values at the four neighbouring diagonal mesh points. 

(3) is called the diagonal five-point formula which is represented in Figure 
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2. Although (3) is less accurate than (2), yet it serves as a reasonably good approximation for obtaining the 

starting values at the mesh points. 

 

Now to find the initial values of u at the interior mesh points, we first use the diagonal five-point formula 

(3) and compute 𝑢3,3, 𝑢2,4 , 𝑢4,4 , 𝑢4,2 𝑎𝑛𝑑 𝑢2,2 in this order. Thus we get, 

𝑢3,3 =
1

4
(𝑏1,5 +  𝑏5,1 +  𝑏5,5 +  𝑏1,1); 

𝑢2,4 =
1

4
(𝑏1,5 +  𝑢3,3 +  𝑏3,5 +  𝑏1,3) 

𝑢4,4 =
1

4
(𝑏3,5 +  𝑏5,3 + 𝑏3,5 + 𝑢3,3); 

 𝑢4,2 =
1

4
(𝑢3,3 +  𝑏5,1 +  𝑏3,1 +  𝑏5,3) 

𝑢2,2 =
1

4
(𝑏1,3 + 𝑏3,1 + 𝑢3,3 + 𝑏1,1) 

The values at the remaining interior points, i.e., 𝑢2,3, 𝑢3,4, 𝑢4,3 and 𝑢3,2 are computed by the standard five-

point formula (2). Thus, we obtain 

𝑢2,3 =
1

4
(𝑏1,3 +  𝑢3,3 +  𝑢2,4 + 𝑢2,2), 

𝑢3,4 =
1

4
(𝑢2,4 + 𝑢4,4 + 𝑏3,5 + 𝑢3,3) 

𝑢4,3 =
1

4
(𝑢3,3 + 𝑏5,3 + 𝑢4,4 + 𝑢4,2), 

 𝑢3,2 =
1

4
(𝑢2,2 + 𝑢4,2 +  𝑢3,3 + 𝑢3,1) 

Having found all the nine values of ui, j once, their accuracy is improved by either of the following 

iterative methods. In each case, the method is repeated until the difference between two consecutive iterates 

becomes negligible. 

 

In general,  

𝑢𝑖,𝑗
𝑛+1 =

1

4
[𝑢𝑖−1,𝑗

𝑛+1 + 𝑢𝑖+1,𝑗
𝑛 + 𝑢𝑖,𝑗+1

𝑛+1 + 𝑢𝑖,𝑗−1
𝑛 ] 

This is called Liebmann’s Process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



              

       MANGALORE INSTITUTE OF TECHNOLOGY & ENGINEERING 
(A Unit of Rajalaxmi Education Trust®, Mangalore) 

Autonomous Institute affiliated to VTU, Belagavi, Approved by AICTE, New Delhi 

23BSCC103 ENGINEERING MATHEMATICS-II  

 

Problems: 

1. Solve the elliptic equation 
𝝏𝟐𝒖

𝝏𝒙𝟐
+

𝝏𝟐𝒖

𝝏𝒚𝟐
= 𝟎 for the square mash of fig 1(a) with boundary values as 

shown. 

Solution. Let 𝑢1, 𝑢2, … , 𝑢9 be the values of 𝑢 at the interior 

mesh-points. Since the boundary values of 𝑢 are symmetrical 

about AB. 

∴               𝑢7 = 𝑢1, 𝑢8 = 𝑢2, 𝑢9 = 𝑢3. 
Also the values of 𝑢 being symmetrical about 𝐶𝐷, 𝑢3 = 𝑢1, 
𝑢6 = 𝑢4, 𝑢9 = 𝑢7. 
Thus it is sufficient to find the values 𝑢1, 𝑢2, 𝑢4 and 𝑢5. 

Now we find their initial value in the following order : 

 

𝑢5 =
1

4
(2000 + 2000 + 1000 + 1000) = 1500 (std. formula)   

𝑢1 =
1

4
(0 + 1500 + 1000 + 2000) = 1125 (Diag. formula)                                     1(a) 

𝑢2 =
1

4
(1125 + 1125 + 1000 + 1500) = 1188 (std. formula) 

𝑢4 =
1

4
(2000 + 1500 + 1125 + 1125) = 1438 (std. formula) 

We carry out the iteration process using the formulae: 

𝑢1
(𝑛+1)

=
1

4
(1000 + 𝑢2

(𝑛) + 500 + 𝑢4
(𝑛)) 

𝑢2
(𝑛+1)

=
1

4
(𝑢1

(𝑛+1)
+ 𝑢1

(𝑛) + 1000 + 𝑢5
(𝑛)) 

𝑢4
(𝑛+1)

=
1

4
(2000 + 𝑢5

(𝑛)
+ 𝑢1

(𝑛+1) + 𝑢1
(𝑛)) 

𝑢5
(𝑛+1)

=
1

4
(𝑢4

(𝑛+1)
+ 𝑢4

(𝑛)
+ 𝑢2

(𝑛+1) + 𝑢2
(𝑛)) 

First iteration: (put n=0) 

 

𝑢1
(1)

=
1

4
(1000 + 1188 + 500 + 1438) = 1032 

𝑢2
(1)

=
1

4
(1032 + 1032 + 1000 + 1500) = 1141 

𝑢4
(1)

=
1

4
(2000 + 1500 + 1032 + 1032) = 1391 

𝑢5
(1)

=
1

4
(1391 + 1391 + 1141 + 1141) = 1266 

Second iteration: (put n=1)  𝑢1
(2)

= 1008, 𝑢2
(2)

= 1069, 𝑢4
(2)

= 1321 , 𝑢5
(2)

= 1195 

Third iteration:  𝑢1
(3)

= 973, 𝑢2
(3)

= 1035, 𝑢4
(3)

= 1288 , 𝑢5
(3)

= 1162 

Fourth iteration: 𝑢1
(4)

= 956, 𝑢2
(4)

= 1019, 𝑢4
(4)

= 1269 , 𝑢5
(4)

= 1144 

Fifth iteration: 𝑢1
(5)

= 947, 𝑢2
(5)

= 1010, 𝑢4
(5)

= 1260 , 𝑢5
(5)

= 1135 

Sililarly, 𝑢1
(6)

= 942, 𝑢2
(6)

= 1005, 𝑢4
(6)

= 1255 , 𝑢5
(6)

= 1130 

𝑢1
(7)

= 940, 𝑢2
(7)

= 1003, 𝑢4
(7)

= 1253 , 𝑢5
(7)

= 1128 

𝑢1
(8)

= 939, 𝑢2
(8)

= 1002, 𝑢4
(8)

= 1252 , 𝑢5
(8)

= 1127 
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𝑢1
(9)

= 939, 𝑢2
(9)

= 1001, 𝑢4
(9)

= 1251 , 𝑢5
(9)

= 1126 

Hence  𝑢1 = 939, 𝑢2
⬚ = 1001, 𝑢4

⬚ = 1251 , 𝑢5
⬚ = 1126. 

 

2) Given the values of 𝒖(𝒙, 𝒚) on the boundary of the square in the fig. 2(a), evaluate the function 

𝒖(𝒙, 𝒚) satisfying the Laplace equation 
𝝏𝟐𝒖

𝝏𝒙𝟐 +
𝝏𝟐𝒖

𝝏𝒚𝟐 = 𝟎 at the pivotal points of this figure. 

Solution:To get the initial values  of  𝑢1, 𝑢2, 𝑢3, 𝑢4 we assume 𝑢4 = 0. 
Then  

𝑢1 =
1

4
(1000 + 0 + 1000 + 2000) = 1000 (Diag. formula) 

𝑢2 =
1

4
(1000 + 500 + 1000 + 0) = 625   (Std. formula) 

 𝑢3 =
1

4
(2000 + 0 + 1000 + 500) = 875  (Std. formula) 

𝑢4 =
1

4
(875 + 0 + 625 + 0) = 375 (Std. formula) 

We carry out the successive iterations, using the formulae 

                                                                                                              

                                                                                                                               2(a)                                                

𝑢1
(𝑛+1)

=
1

4
(2000 + 𝑢2

(𝑛) + 1000 + 𝑢3
(𝑛)) 

𝑢2
(𝑛+1)

=
1

4
(𝑢1

(𝑛+1)
+ 500 + 1000 + 𝑢4

(𝑛)) 

𝑢3
(𝑛+1)

=
1

4
(2000 + 𝑢4

(𝑛)
+ 𝑢1

(𝑛+1) + 500) 

𝑢5
(𝑛+1)

=
1

4
(𝑢3

(𝑛+1)
+ 0 + 𝑢2

(𝑛+1) + 0) 

First iteration: (put n=0) 

 

𝑢1
(1)

=
1

4
(2000 + 625 + 1000 + 875) = 1125 

𝑢2
(1)

=
1

4
(1125 + 500 + 1000 + 375) = 750 

𝑢3
(1)

=
1

4
(2000 + 375 + 1125 + 500) = 1000 

𝑢4
(1)

=
1

4
(1000 + 0 + 750 + 0) = 438 

Second iteration: (put n=1)   𝑢1
(2)

= 1188, 𝑢2
(2)

= 782, 𝑢3
(2)

= 1032, 𝑢4
(2)

= 454 

Third iteration:  𝑢1
(3)

= 1204, 𝑢2
(3)

= 789, 𝑢3
(3)

= 1040 , 𝑢4
(3)

= 458 

Fourth iteration: 𝑢1
(4)

= 1207, 𝑢2
(4)

= 791, 𝑢3
(4)

= 1041 , 𝑢4
(4)

= 458 

Fifth iteration: 𝑢1
(5)

= 1208, 𝑢2
(5)

= 791.5, 𝑢3
(5)

= 1041.5 , 𝑢4
(5)

= 458.25 

Hence 𝑢1 = 1208, 𝑢2 = 792, 𝑢3 = 1042, 𝑢4 =  458. 
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3. Solve 𝒖𝒙𝒙 + 𝒖𝒚𝒚 = 𝟎 for the temperature of the heated plate for the square region shown in figure 

below. Determine the temperature at the internal mesh points up to the third iteration . Give an 

estimate of the per cent error in the value of 𝒖𝟐𝟐. 

Solution: 𝑢11
(1)

= 26.25, 𝑢21
(1)

= 9.84375, 𝑢31
(1)

= 10.691406,  

𝑢12
(1)

= 36.09375, 𝑢22
(1)

= 17.226562, 𝑢32
(1)

= 25.469238, 

𝑢13
(1)

= 69.785156, 𝑢23
(1)

= 62.629394, 𝑢33
(1)

= 78.036987 

Second iteration values: Error in 𝑢22
(2)

= 65% 

Third iteration : Error in 𝑢22
(3)

= 13% 

 

 

 

 

 

 

Home work Problems: 

 

1. Solve the Laplace equation 𝑢𝑥𝑥 + 𝑢𝑦𝑦 = 0 given that                          

 

 

 

 

 

 

 

2. Solve the equation 𝑢𝑥𝑥 + 𝑢𝑦𝑦 = 0 for the following square mesh with boundary values as shown in 

Fig. Iterate until the maximum difference between the successive values at any point in less than 

0.001.  

 

 

 

 

 

 

3. Solve the elliptic equation 𝑢𝑥𝑥 + 𝑢𝑦𝑦 = 0 for the square mesh with boundary values as shown in fig. 

Iterate until maximum difference between successive values at any point is less than 0.005.  
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4. Solve ∇2𝑢 = 0 under the conditions (h=1,k=1), 𝑢(0, 𝑦) = 0, 𝑢(4, 𝑦) = 12 + 𝑦 𝑓𝑜𝑟 0 ≤ 𝑦 ≤

4; 𝑢(𝑥, 0) = 3𝑥, 𝑢(𝑥, 4) = 𝑥2 𝑓𝑜𝑟 0 ≤ 𝑥 ≤ 4. 

5. Consider a two-dimensional region with dimensions 4 cm by 4 cm. The Laplace equation for the 

temperature distribution, ∇²T = 0, describes the steady-state heat conduction in the region.  

Assume the following boundary conditions: 

𝑢(0, 𝑦) = 0,  0 ≤ 𝑦 ≤ 4 

𝑢(4, 𝑦) = 12 + 𝑦,  0 ≤ 𝑦 ≤ 4 

𝑢(𝑥, 0) = 3𝑥,  0 ≤ 𝑥 ≤ 4 

𝑢(𝑥, 4) = 𝑥2,  0 ≤ 𝑦 ≤ 4 carryout 2 iterations.  
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