
COMPUTATIONAL THINKING &
PROGRAMMING

23ESCC111

Contents

• Introduction to Problem solving

•Computational Thinking

•Key techniques of computational thinking

•Problem analysis

•Logic building for solutions

• Algorithm, Pseudo Code, Flow Chart

• Debugging & Testing the codes.

• Introduction to digital computers

•Overview of operating systems

•Assemblers, Compilers, Interpreters

•Programming languages.

What is Computational Thinking?

Computational thinking is a problem-solving
approach that involves thinking in a way that draws
upon concepts and techniques from computer
science.

3

It is a mindset or set of skills that enables
individuals to approach complex problems and
tasks systematically, breaking them down into
smaller, more manageable parts.

What is Computational Thinking?

(Contd….)

Computational thinking is not limited to
computer-related problems; it can be applied
to a wide range of domains and everyday life.

4

Examples which demonstrate how

computational techniques can be used

in various fields

5

Examples on CT(Contd….)

Route Optimization: GPS navigation systems use
computational thinking to find the best route from one
location to another. They decompose the problem into
smaller steps, such as identifying roads, calculating
distances, and factoring in traffic conditions.

6

Language Translation: Machine translation systems like
Google Translate employ computational thinking to
translate text from one language to another. They use
algorithms to recognize patterns in language and generate
corresponding translations

Examples on CT(Contd….)

Language Translation: Machine translation
systems like Google Translate employ
computational thinking to translate text from one
language to another. They use algorithms to
recognize patterns in language and generate
corresponding translations.

7

Weather Forecasting: Meteorologists use
computational thinking to process vast amounts of
weather data, simulate weather patterns, and

make predictions.

Examples on CT(Contd….)

Robotics: In robotics, computational thinking is
used to program robots to perform tasks.
Algorithms help robots navigate their
environments, make decisions, and manipulate
objects.

8

Natural Language Processing (NLP): NLP
applications like chatbots and sentiment analysis
rely on computational thinking to process and
understand human language. Algorithms break
down language into structured data for analysis.

Key Techniques of CT

Computational thinking involves several key
techniques that help individuals approach
and solve complex problems in a systematic
and efficient manner.

9

Key Techniques of CT (Contd..)

Decomposition: Break down a complex problem or task
into smaller, more manageable sub problems. This
technique simplifies the problem, making it easier to
understand and solve. Decomposition helps identify the
main components and dependencies within the problem.

10

Pattern Recognition: Recognize patterns, regularities,
or similarities within data or a problem. This technique
involves identifying recurring elements, relationships, or
trends. Pattern recognition can lead to insights and more

efficient problem-solving approaches.

Key Techniques of CT (Contd..)

Abstraction: Focus on the essential details and hide
unnecessary complexities. Abstraction simplifies complex
problems by creating a high-level representation that
captures the most important aspects. It helps in
understanding the problem's structure and finding
solutions.

11

Algorithm Design: Create step-by-step plans or algorithms
to solve a problem. Algorithms provide a clear and
systematic approach to accomplishing tasks or addressing
challenges. Effective algorithm design is crucial for
achieving efficient and reliable solutions.

Key Techniques of CT (Contd..)

Generalization: Apply solutions or strategies from one
problem to similar problems. Generalization allows you to
leverage previous knowledge and experiences to solve
new and related challenges. It promotes efficiency and
consistency in problem-solving.

12

Evaluation: Assess the quality and effectiveness of a
solution. Evaluation involves critical thinking and the
refinement of solutions to make them more efficient,
accurate, and reliable. It helps in determining whether a
solution meets the desired goals and criteria.

Key Techniques of CT (Contd..)

Logical Reasoning: Apply logic and reasoning to analyze
problems and make informed decisions. Logical thinking
helps in determining the validity of arguments, identifying
cause-and-effect relationships, and drawing conclusions
based on evidence.

13

Optimization: Find the most efficient or optimal solution
within a set of constraints. Optimization techniques aim to
maximize or minimize certain objectives while considering
limitations or requirements. It is often used in resource
allocation and decision-making.

Key Techniques of CT (Contd..)

Simulation: Create models or simulations of real-world
systems to understand their behavior and make
predictions. Simulation techniques help in testing
hypotheses and scenarios without affecting the actual
system.

14

Debugging: Identify and correct errors or issues in code or
solutions. Debugging involves systematic problem-solving
to locate and fix problems in software or algorithms.

What is problem analysis?

✔ Problem analysis is a systematic process of
examining a problem or a challenge to gain a
deeper understanding of its nature, causes,
and potential solutions.

✔ It is an essential step in problem-solving and
decision-making in various domains,
including business, engineering, science, and
everyday life.

15

What is problem analysis?

✔ The goal of problem analysis is to break
down a complex problem into its constituent
parts, identify the underlying causes or
factors contributing to the problem, and
generate insights that can guide effective

solutions.

16

Examples that illustrate how problem
analysis can be applied in different
contexts:

17

Examples on Problem Analysis

Business Operations:

Problem: A manufacturing company is experiencing a
significant increase in product defects.

Analysis: Conduct a root cause analysis to identify factors
contributing to the defects, such as machine malfunctions,
operator errors, or material quality issues.

Solutions: Implement corrective actions based on the
analysis, which may include machine maintenance, operator
training, and supplier quality checks.

18

Examples on Problem Analysis

Healthcare:

Problem: A hospital is facing long patient wait times
in the emergency department.

Analysis: Analyse patient flow, staffing levels, and
triage processes to identify bottlenecks and delays.

Solutions: Optimize staff scheduling, streamline
triage procedures(prioritizing), and consider
expanding capacity to reduce wait times.

19

Examples on Problem Analysis

Environmental Conservation:

Problem: A city is experiencing increased pollution levels and
environmental degradation.

Analysis: Investigate the sources of pollution, including
industrial emissions, transportation, and waste management
practices.

Solutions: Develop and implement policies and initiatives to
reduce pollution, such as stricter emissions standards, public
transportation improvements, and recycling programs.

20

Examples on Problem Analysis
Public Policy:

Problem: A city experiences traffic congestion and jam during

rush hours.

Analysis: Examine traffic flow patterns, road infrastructure,

and public transportation options.

Solutions: Implement traffic management strategies, invest in

public transportation expansion, and consider congestion

pricing policies. 21

Logic Building for solutions

• Logic building for solutions involves developing

a systematic and structured approach to solving

problems and making decisions.

• It is a critical skill in problem-solving and is

applicable across various domains.

22

Steps and strategies to build logical
solutions

23

Steps and strategies to build logical
solutions

24

Understand the Problem:

• Clearly define the problem and its

scope(boundaries).

• Gather all relevant information and data

related to the problem.

• Identify any constraints or limitations that must

be considered.

Steps and strategies to build logical
solutions(Contd..)

25

Decompose the Problem:

• Break the problem down into smaller,
more manageable sub problems or
components.

• Identify the relationships and
dependencies between these
components.

Steps and strategies to build logical
solutions(Contd..)

26

Analyse the Causes:

• Conduct a root cause analysis to
determine the underlying factors
contributing to the problem.

• Investigate the sequence of events that
lead to the problem's occurrence.

Steps and strategies to build logical
solutions(Contd..)

27

Identify Goals and Objectives:

• Clearly state the desired outcomes and
goals of solving the problem.

• Define specific criteria for success and
what constitutes a solution.

Steps and strategies to build logical
solutions(Contd..)

28

Generate Ideas and Solutions:

• Brainstorm potential solutions without
judgment.

• Prioritize solutions based on feasibility,
effectiveness, and potential impact.

Steps and strategies to build logical
solutions(Contd..)

29

Evaluate Alternatives:

• Assess the advantages and
disadvantages of each proposed
solution.

• Consider potential risks, costs, and
benefits associated with each option.

Steps and strategies to build logical
solutions(Contd..)

30

Select the Best Solution:

• Choose the solution that aligns best with
the problem's goals and objectives.

• Ensure that the selected solution is
practical, feasible, and has a high
likelihood of success.

Steps and strategies to build logical
solutions(Contd..)

31

Plan Implementation:

• Develop a detailed plan for implementing
the chosen solution.

• Specify the steps, resources, and timeline
required for execution.

• Assign responsibilities to individuals or
teams involved in the implementation.

Steps and strategies to build logical
solutions(Contd..)

32

Execute and Monitor:

• Implement the solution according to the plan.

• Continuously monitor progress and gather

data to assess the solution's effectiveness.

• Be prepared to make adjustments or

refinements as necessary.

What is an Algorithm ?

33

An algorithm is a step-by-step, precise
set of instructions or a well-defined
computational procedure used to solve
a specific problem, perform a particular
task, or accomplish a desired outcome.

Program Designing Tools

Key characteristics of algorithms

34

Step-by-Step Instructions: Algorithms consist of a
sequence of well-defined and ordered steps that
guide the execution of a task. Each step represents
an operation or action that should be performed.

Unambiguous: Algorithms are unambiguous and
leave no room for interpretation. Each step must be
clearly defined and understood, so there is no
ambiguity in how to execute them.

Algorithms characteristics(Contd..)

35

Termination: An algorithm should eventually
reach a conclusion or produce an output,
indicating the completion of the task. It should
not run indefinitely.

Input and Output: Algorithms typically take input
data, process it through a series of steps, and
produce an output or result based on the input
and the algorithm's logic.

Algorithms characteristics(Contd..)

36

Deterministic: Algorithms are deterministic,
meaning that for a given input, they will always
produce the same output. There is no
randomness or uncertainty in their behaviour.

Efficiency: Algorithms can be evaluated in terms
of their efficiency, such as how quickly they
produce results and how many computational
resources (e.g., time and memory) they consume.

Algorithm to find the largest of 2
numbers

37

Step 1: Start
Step 2: Input the values of A, B Compare
A and B.
Step 3: If A > B then go to step 5
Step 4: Display “B is largest” go to Step
6
Step 5: Display “A is largest”
Step 6: Stop

Algorithm to add two numbers

38

Step 1: Start
Step 2: Read values for num1, num2.
Step 4: Add num1 and num2 to get the
sum
Step 5: Display sum
Step 6: Stop

Algorithm to compute simple interest

39

Simple Interest= (p*t*r)/100

Step 1: Start

Step 2: Read p, t, r

Step 3: si ←(p*t*r)/100

Step 4 : Print “ si ”

Step 5: Stop

Algorithm to find area and circumference of

circle

40

Step 1: Start

Step 2: Read r

Step 3: area←3.142*r*r

Step 4:circum←2*3.142*r

Step 5: Print “area , circumference”

Step 6: Stop

41

Program Designing Tools

Pseudocode

It is a detailed readable description of what a

computer program must do, expressed in a

formally-styled natural language rather than in a

programming language

42

Characteristics of Pseudocode

1.Informal Language: Pseudocode is written in plain, human-

readable language rather than a specific programming language. This

makes it accessible to both programmers and non-programmers.

2.Readability: Pseudocode should be easy to read and understand. It

often uses structured English phrases, simple mathematical

notations, and indentation to represent program flow and structure.

3.No Fixed Syntax: Pseudocode has no rigid syntax rules or

conventions like programming languages do. Instead, it relies on the

author's discretion to create a clear and coherent representation of

the algorithm.

43

Characteristics of Pseudocode

4. Modularity: Pseudocode encourages breaking down complex

problems into smaller, manageable sub-problems or functions. These

sub-problems can be described separately and then integrated into

the overall algorithm.

5. No Specific Language Constraints: Pseudocode is not tied to any

particular programming language, which allows programmers to

express algorithms in a language-agnostic way.

44

Pseudocode to find Area of a circle and
Perimeter of a circle

// Area of a circle

BEGIN

NUMBER r, area

INPUT r

area=3.14*r*r

OUTPUT area

END

// Perimeter of a circle

BEGIN

NUMBER r, perimeter

INPUT r

perimeter=3.14*2*r

OUTPUT perimeter

END

45

Pseudocode to calculate Simple Interest

// calculate a simple interest

1. Start

2. Input the principal amount (P)

3. Input the annual interest rate (R)

4. Input the time period in years (T)

5. Calculate the simple interest (SI) using the formula:

SI = (P * R * T) / 100

6. Display the simple interest (SI)

7. End

46

Pseudocode to add two numbers

// add two numbers

1. Start

2. Input the first number (num1)

3. Input the second number (num2)

4. Add num1 and num2 and store the result in a variable (sum)

5. Display the sum

6. End

47

Pseudocode to find largest of two numbers

// largest of two numbers

1. Start

2. Input the first number (num1)

3. Input the second number (num2)

4. If num1 is greater than num2, then:

5. Display num1 as the largest number Else if num2 is greater than num1,

then:

6. Display num2 as the largest number

Else:

7. Display "Both numbers are equal."

8. End

Algorithm:

•An algorithm is a step-by-step set of

instructions for solving a specific

problem or performing a task.

• It is a high-level description of the

solution, independent of any specific

programming language.

•Algorithms are usually presented in a

natural language or a more formal

mathematical notation.

Pseudocode in C:

•Pseudocode is a way to represent an

algorithm using a mix of natural language and

some programming-like constructs.

•Pseudocode is less formal than actual code

and is used to outline the structure and logic of

a program without getting into the specifics of

syntax.

•Pseudocode often uses C-like syntax for

readability and to make it easier to translate

into actual code later.

Comparing Algorithm and Pseudocode

Algorithm:

•They focus on the logic and overall

strategy for solving a problem.

•Algorithms can be implemented in

various programming languages

Pseudocode in C:

• It is a helpful tool for planning and designing a

program before you start writing actual code.

•Pseudocode is not a strict programming

language; it's a bridge between a high-level

algorithm and low-level code.

Comparing Algorithm and Pseudocode

Algorithm and Pseudocode to find largest of 3

numbers
Step 1. Start

Step 2. Read three numbers A, B, and C

Step 3. If A is greater than B and A is

greater than C, then

Step 4. Display A as the largest number

Step 5. otherwise if B is greater than A and

B is greater than C, then

Step 6. Display B as the largest number

Step 7. otherwise Display C as the largest

number

Step 8. stop

1. Begin

2. Declare variables A, B, C, and largest as

integers

3. Prompt the user to enter three numbers and

store them in A, B, and C

4. Set largest to A

5. If B is greater than largest, then Set largest to

B

6. If C is greater than largest, then Set largest to

C

7. Print largest as the largest number

8. End

Algorithm: Pseudocode:

Algorithm and Pseudocode to find voting eligibility

Step 1. Start
Step 2. Read the age of the person
Step 3. If the age is greater than or

equal to 18, then
Step 4: Display "You are eligible to

vote."
Step 5. otherwise

Display "You are not eligible to
vote."

Step 6. Stop

1. Begin
2. Declare a variable age as an integer
3. Prompt the user to enter their age

and store it in age
4. If age is greater than or equal to

18,then
5. Print "You are eligible to vote."
6. Else Print "You are not eligible to
vote."
7. End

Algorithm: Pseudocode:

Algorithm and Pseudocode to Convert a

temperature from Celsius to Fahrenheit:

Step 1. Start
Step 2. Read the temperature in

Celsius (C)
Step 3. Calculate the temperature
in Fahrenheit (F) using the

formula: F = (C × 9/5) + 32
Step 4. Display the temperature in

Fahrenheit (F)
Step 5. Stop

1. Begin
2. Declare variables C and F as real

numbers
3. Prompt the user to enter the

temperature in Celsius and
store it.
4. Set F to (C * 9/5) + 32
5. Print "The temperature in

Fahrenheit is:", F
6. End

Algorithm:
Pseudocode:

Algorithm and Pseudocode to Swap Two Numbers

using temporary variable

Step 1: Start

Step 2: Initialize two variables, a and b,

with the numbers you want to swap.

Step 3: Create a temporary variable, temp,

to hold one of the numbers.

Step 4: Store the value of a in temp.

Step 5: Assign the value of b to a.

Step 6: Assign the value of temp (which is

the original value of a) to b.

Step 7: Now, a and b have been swapped.

Step 8: Stop

1. Begin

2. Input the values of 'a' and 'b’.

3. Print the original values of 'a' and
'b’.

4. Set temp=a

5. Set a=b

6. Set b=temp.

7. Print the swapped values of 'a' and
'b’.

8. End

Algorithm: Pseudocode:

Algorithm and Pseudocode to Swap Two Numbers

without using temporary variable

Step 1: Start

Step 2: Initialize two variables, num1 and

num2, with the numbers you want to swap.

Step 3:

Step 4: add num1 and num2 store it in

num1.

Step 5: sub num2 from num1 store it in

num2.

Step 6: sub num2 from num1 store it in

num1.

Step 7: Now, num1 and num2 have been

swapped.

Step 8: Stop

Algorithm: Pseudocode:

Algorithm and Pseudocode to convert Kilometer to

meter

Step 1: Start

Step 2: read kilometer

Step 3: meter = kilometer*1000

Step 4: print meter

Step 5: Stop

Algorithm: Pseudocode:

Algorithm to find Sum of First n Numbers

Algorithm: Input : input number n -> 5

n=5

Sum=0, i =1

sum=sum + i

1= 0+1 increment i by 1(till i=n)

3=1+2 increment i by 1(till i=n)

6=3+3 increment i by 1(till i=n)

10=6+4 increment i by 1(till i=n)

15=10+5 increment i by 1(till i=n)

Output: sum =15

Input : input number n

Step 1: Start

Step 2: Read number n

Step 3: assign sum to 0 and i to 1

Step 4: Repeat steps 5 to 7 until i <= n

Step 5: update sum as sum = sum + i

Step 6: increment i by 1

Step 7: Print sum

Step 8: Stop

Output: sum

Algorithm to find factorial of given number

Algorithm:

1. Begin

2. Declare N and F as integer variable.

3. assign F=1.

4. Enter the value of N.

5. Check whether N>0, if not then F=1.

6. If yes then, F=F * N

7. Decrease the value of N by 1 .

8. Repeat step 6 and 7 until N=0.

9. print the value of F.

10.End

Pseudocode:

Step 1 ->START

Step 2→ Take integer variable A

Step 3→ Assign value to the

variable

Step 4 → From value A upto 1

multiply each digit and store

Step 5 → the final stored value is

factorial of A

Step 6 -> STOP

58

Program Designing Tools

Flowchart

Flowchart in C is a diagrammatic representation of a

sequence of logical steps of a program.

Flowcharts use standardized symbols and conventions

to represent different elements of a process, making it

easier for people to understand and communicate

complex procedures or algorithms.

59

Characteristics of Flowchart

•Visualization: They provide a visual representation of

a process, making it easier to understand and analyze.

•Documentation: Flowcharts document complex

procedures, making it easier for others to follow,

implement, or troubleshoot.

•Communication: They facilitate communication

between team members, stakeholders, or

collaborators, as they offer a common visual language

for discussing processes.

60

Characteristics of Flowchart

•Analysis: Flowcharts helps to identify or errors in a

process and can be used for process improvement.

•Problem Solving: Flowcharts are useful for

breaking down complex problems into smaller,

more manageable steps, aiding in problem-solving

and decision-making.

61

Basic flowchart symbols

62

Basic flowchart symbols

63

Flowchart to Print message "Hello Everybody"

Flowchart

64

Flowchart to Enter two numbers and their sum to
be printed

Flowchart

65

Flowchart to Check whether the number is even or odd
Flowchart

Yes

No

66

Flowchart to find area of circle

Flowchart

67

Flowchart to find largest of two numbers
Flowchart

68

Flowchart
flowchart to find average of 3 numbers.

69

flowchart to find sum
of even numbers

70

flowchart to find factorial of given number

Yes

No

71

flowchart to find whether a number is positive or negative

Testing and Debugging Approaches in C

Testing: Testing in C involves various techniques and practices to

ensure that your C programs are reliable, free of bugs, and meet

their intended functionality

1. Unit Testing

• Unit testing is a method of testing individual units or

components of a software application. It is typically done by

developers and is used to ensure that the individual units of the

software are working as intended.

Testing and Debugging Approaches in C

1. Unit Testing

Testing and Debugging Approaches in C

Testing:

2. Integration Testing

Integration testing is a method of

testing how different units or

components of a software

application interact with each

other.

Testing and Debugging Approaches in C

Testing:

3. System testing

It is the process in which a

quality assurance (QA) team

evaluates how the various

components of an application

interact together in the full,

integrated system or

application.

Debugging: Debugging is the process of finding and resolving

defects or problems within a computer program that prevent

the correct operation of computer software or a system.

a. Brute Force Method:The brute force approach is an approach

that finds all the possible solutions to find a satisfactory

solution to a given problem.

b. Back tracking: This can be defined as a general algorithmic

technique that considers searching every possible combination

in order to solve a computational problem.

Testing and Debugging Approaches in C

Introduction to digital

computers

What is computer?

A computer is a machine or device that performs

processes, calculations and operations based on

instructions provided by a software or hardware

program.

It has the ability to accept data (input), process it,

and then produce outputs.

What is computer?

• A Computer is device that can automatically

performs a set of instructions.

• The computer takes as input these instructions as a

single unit, uses them to manipulate the data, and

outputs the results in user-specified ways.

• The processing is fast, accurate and consistent, and is

generally achieved without significant human

intervention.

What is computer?

Characteristics of a Computer

1. Speed: – As you know computer can work very fast. It

takes only few seconds for calculations that we take hours

to complete.

• perform millions (1,000,000) of instructions and even

more per second.

2. Accuracy: – The degree of accuracy of computer is very

high and every calculation is performed with the same

accuracy.

Characteristic of a Computer

3. Diligence: – A computer is free from tiredness,

lack of concentration, low energy, etc. It can work

for hours without creating any error.

4. Versatility: – It means the capacity to perform

completely different type of work.

5. Automation:- Can perform task without any

human intervention.

Characteristic of a Computer

6. Memory: – Computer has inbuilt memory where

it can store large amount of data.

7. No IQ: – Computer is a dumb machine and it

cannot do any work without instruction from the

user.

8.Economical:- Since computers reduces

manpower requirements and leads to efficient way

of performing task.

Parts of Computer

Input Unit Output Unit

AL Unit

Memory Unit

Parts of Computer
• Input Unit

A computer will only respond when a command is given to

the device. These commands can be given using the input

unit or the input devices.

For example: Keyboard, Mouse

• The data entered can be in the form of numbers,

alphabet, images, etc. We enter the information using an

input device, the processing units convert it into

computer understandable languages and then the final

output is received by a human-understandable language.

Parts of Computer

•Output Unit

When we command a computer to perform a task, it reverts

for the action performed and gives us a result. This result is

called output. There are various output devices connected

to the computer.

• The most basic of which is a monitor. Whatever we write

using a keyboard or click using a mouse, is all displayed

on the monitor.

For example: Monitor, Printer

Parts of Computer

•Memory Unit

▪ When we enter the data into the computer using

an input device, the entered information

immediately gets saved in the memory unit of the

Central Processing Unit (CPU).

▪ The output of our command is processed by the

computer, it is saved in the memory unit before

giving the output to the user.

Parts of Computer
•Control Unit

This is the core unit which manages the entire

functioning of the computer device.

The Control Unit collects the data entered using the

input unit, leads it on for processing and once that

is done, receives the output and presents it to the

user.

Parts of Computer
•Arithmetic & Logical Unit

As the name suggests, all the mathematical calculations

or arithmetic operations are performed in the

Arithmetic and Logical Unit of the CPU.

• It can also perform actions like a comparison of data

and decision-making actions.

• The ALU comprises circuits using which addition,

subtraction, multiplication, division and other

numerical based calculations can be performed.

Parts of a Computer

Two basic parts

Hardware Computer hardware includes the
physical parts of a computer

Software Computer software, instructions
tell a computer what to do.

Hardware

Hardware is basically that you can touch with your fingers.

• Computer Case

• CPU (central processing unit...Pentium chip)

• Monitor

• Keyboard & Mouse

• Disk Drive- CD-ROM, DVD,

• Hard Drive

• Memory (RAM)

• Speakers

• Printer

THE CENTRAL PROCESSING UNIT (CPU)

⮚The CPU has evolved from a bulky vacuum tube based

unit of the 1940s to a modern 5cm square chip that is

commonly called the microprocessor, or simple

processor. It comprises the following components

⮚Arithmetic and Logic Unit (ALU)

⮚Special purpose registers(hold the status of a program)

⮚Control Unit (CU)

⮚A clock

PRIMARY MEMORY
Primary memory is computer memory that a processor or

computer accesses first.

It allows a processor to access running execution

applications and services that are temporarily stored in a

specific memory location.

It is a volatile memory as the data loses when power is

turned off.

PRIMARY MEMORY

⮚Random Access Memory (RAM-SRAM and DRAM): RAM is

essentially short term memory where data is stored as the

processor needs it.

⮚Read Only Memory (ROM, PROM,EPROM,

EEPROM): ROM, is a type of computer storage

containing non-volatile, permanent data that,

normally, can only be read, not written to.

PRIMARY MEMORY

The primary memory which includes the following types:

⮚Cache Memory (L1, L2 and L3): It acts as a temporary

storage area that the computer's processor can retrieve

data from easily.

⮚CPU Registers: is the smallest and fastest memory in a

computer. It is not a part of the main memory and is

located in the CPU in the form of registers, which are the

smallest data holding elements.

PRIMARY MEMORY

The Cache Memory (L1, L2 and L3):

PRIMARY MEMORY

The CPU Registers

MEMORY

SECONDARY MEMORY

• Secondary memory is computer memory that is

non-volatile and persistent in nature and is not

directly accessed by a computer/processor.

• It allows a user to store data that may be

instantly and easily retrieved, transported and

used by applications and services.

SECONDARY MEMORY

⮚Hard disk including the portable disk (500 GB to 4 TB).

⮚Magnetic tape (20 TB).

⮚CD-ROM (700 MB-less than 1 GB).

⮚DVD-ROM (4.7 GB and 8.5 GB).

⮚Blu-ray disk (27 GB and 50 GB).

⮚Flash memory (1 GB to 128 GB).

⮚The obsoleted floppy disk (1.2 MB and 1.44 MB).

The Hard Disk

• Hard disk, also called hard disk drive or hard

drive, magnetic storage medium for a computer.

• Hard disks are flat circular plates made of

aluminum or glass and coated with a magnetic

material.

• Hard disks for personal computers can store

terabytes (trillions of bytes) of information.

The Hard Disk

• They can store operating systems,

software programs and other files using

magnetic disks.

• Hard disk drives manage the process

of both reading from and writing to the

hard disk, which serves as the storage

medium for data.

The Hard Disk

Spinning platters

where data is stored in

sectors, and these

platters rotate to

enable the reading

and writing of data

within specific sectors.

Magnetic Tape

Optical Disks: The CD-ROM, DVD-ROM and Blu-
Ray

Flash Memory

Floppy Diskette

PORTS AND CONNECTORS

1. Universal Serial Bits (USB)

2. Serial port

3. Parallel port

4. Video Graphics Array (VGA) port

5. digital video interface (DVI)

6. RJ45(Registered Jack) port

7. PS(Personal System)/2 port

8. High Definition Multimedia Interface (HDMI)

PORTS AND CONNECTORS

INPUT DEVICES

1. The Keyboard

2. Pointing Devices

3. The Scanner

INPUT DEVICES
The Keyboard: A keyboard is defined as the set of typewriter-

like keys that enables you to enter data into a computer or other

devices.

Pointing Devices: A pointing device, or sometimes called a

pointing tool, is a hardware input device that allows the user to

move the mouse cursor in a computer program or GUI operating

system.

The Scanner: A scanner is an input device that scans

documents such as photographs and pages of text. When a

document is scanned, it is converted into a digital format.

OUTPUT DEVICES

1. The Monitor

2. Impact Printers

▫ Dot-matrix Printer
▫ Daisy-wheel
Printer
▫ Line Printer
3. Non-Impact Printers

Laser Printer
Ink-jet Printer

4. Plotters

OUTPUT DEVICES
The Monitor: A computer monitor is an output device that displays

information in pictorial form.

Impact Printers: An impact printer is a type of printer that operates

by striking a metal or plastic head against an ink ribbon. The ink

ribbon is pressed against the paper, marking the page with the

appropriate character, dot, line, or symbol.

Plotters: A plotter is a printer designed for printing vector graphics.

Instead of printing individual dots on the paper, plotters draw

continuous lines.

Overview of Operating systems

• An Operating System (OS) is an interface

between a computer user and computer

hardware.

• An operating system is a software which

performs all the basic tasks like file management,

memory management, process management,

handling input and output, and controlling

Software

• Software is a set of instructions, data or programs

used to operate computers and execute specific tasks.

• Programs that tell the computer what to do.

• Provides instructions that the CPU will need to carry out.

It is a set of instructions or programs that are used to

execute any particular task. The user cannot touch the

software but can see through the GUI.

Software
1. System Software

• The system software is a type of computer software that is

designed for running the computer hardware parts and the

application programs. It is the platform provided to the

computer system where other computer programs can execute.

• The system software act as a middle layer between the user

applications and hardware. The operating system is the type of

system software. The operating system is used to manage all

other programs installed on the computer.

Software
1. System Software

Software

2. Application Software

• The application software that is designed for the users to

perform some specific tasks like writing a letter, listening

to music or seeing any video.

• The operating software runs the application software in

the computer system.

Software

2. Application Software

• The difference between system software and application

software is the difference in the user interface.

• In system software, there is no user interface present

whereas in application software the user interface is

present for each software.

Software
2. Application Software

Software

3. Programming Languages

• The programming language is the third category of computer

software which is used by the programmers to write their

programs, scripts, and instructions which can be executed by

a computer.

• The other name of the programming language is a computer

language that can be used to create some common standards.

• The examples of programming languages are C, JAVA,

C++,Python and other languages.

Software

3. Programming Languages

Assemblers, Compilers, Interpreters

And Programming languages

Assembler

The Assembler is a Software that converts an assembly language

code to machine code. It takes basic Computer commands and

converts them into Binary Code that Computer’s Processor can use

to perform its Basic Operations.

These instructions are assembler language or assembly language.

Assembler

Assembly Language

An assembly language is a low-level language. It gives instructions to the

processors for different tasks. It is specific for any processor. The machine language

only consists of 0s and 1s therefore, it is difficult to write a program in it.

Machine Code

These are machine language instructions, which are used to control a

computer's central processing unit (CPU). Each instruction causes the CPU to

perform a very specific task, such as a load, a store an arithmetic logic unit (ALU)

operation on one or more units of data in the CPU's registers or memory.

Assembler

A Compiler is a program that translates source code from a high-

level programming language to a lower level language computer

understandable language (e.g. assembly language, object code, or

machine code) to create an executable program

Compiler

• Compiler goes through the entire code at once.

• It helps to detect error and get displayed after reading the entire code

by compiler.

• “Compilers turns the high level language to binary language or

machine code at only time once”, it is known as Compiler.

Compiler

Interpreter

An interpreter is also a program like a compiler that converts assembly

language into Machine Code.

∙ Interpreter goes through one line of code at a time and executes it

and then goes on to the next line of the code and then the next and

keeps going on until there is an error in the line or the code has

completed.

∙ It is 5 to 25 times faster than a compiler, but it stops at the line

where error occurs and then again if the next line has an error too.

Interpreter

∙ Whereas a compiler gives all the errors in the code at once.

∙ Also, a compiler saves the machine codes for future use permanently,

but an interpreter doesn’t, but an interpreter occupies less memory.

Interpreter vs Compiler

Interpreter is differing from compiler such as,

∙ Interpreter is faster than compiler.

∙ It contains less memory.

∙ Interpreter executes the instructions in to source programming

language.

Assembler vs Compiler

Compiler Assembler

Compiler converts the high-level

language source code into machine

level language code.

An assembler converts the assembly level

language code into the machine level

language code.

The input of a compiler is high-level

language source code.

Whereas, its input is low level assembly

code.

Compiler converts the whole source

code to machine code at once.

Assembler does not convert the code in

one go.

Assembler vs Compiler

Compiler Assembler

It has the following phases: syntax

analysis, semantic analysis,

intermediate code generation, code

optimization, code generation and

error handling.

An assembler completes the task in

two passes.

It produces a machine code in form

of mnemonics.

It produces binary code in form of

0s and 1s.

Programming Language

• A programming language is a computer language that is used

by programmers (developers) to communicate with computers.

• It is a set of instructions written in any specific language (C, C++,

Java, Python) to perform a specific task.

• A programming language is mainly used to develop desktop

applications, websites, and mobile applications.

Types of Programming Language

1. Low-level programming language

Low-level language is machine-dependent (0s and 1s) programming

language. The processor runs low- level programs directly without the

need of a compiler or interpreter, so the programs written in low-level

language can be run very fast.

Low-level language is further divided into two parts -

i. Machine Language

ii. Assembly Language

Types of Programming Language

Low-level language is further divided into two parts -

i. Machine Language

• Machine language is a type of low-level programming language. It

is also called as machine code or object code. Machine language is

easier to read because it is normally displayed in binary or

hexadecimal form (base 16) form.

• The advantage of machine language is that it helps the programmer

to execute the programs faster than the high-level programming

language.

Types of Programming Language

Low-level language is further divided into two parts -

ii. Assembly Language

• Assembly language (ASM) is also a type of low-level

programming language that is designed for specific processors. It

represents the set of instructions in a symbolic and human-

understandable form.

• It uses an assembler to convert the assembly language to machine

language. The advantage of assembly language is that it requires

less memory and less execution time to execute a program.

Types of Programming Language

2. High-level programming language

• High-level programming language (HLL) is designed for developing

user-friendly software programs and websites. This programming

language requires a compiler or interpreter to translate the program into

machine language (execute the program).

• The main advantage of a high-level language is that it is easy to read,

write, and maintain.

• High-level programming language includes Python, Java, JavaScript,

PHP, C#, C++, Objective C, Cobol, Perl, Pascal, LISP, FORTRAN, and

Swift programming language.

