Module 2

C Programming Constructs

Contents

Introduction to C

* Basic structure of a C program and execution process.
* Pre-processor directives

 Constants and Variables

 Operators,

* Primitive data types

» Type casting

« |/O statements and format specifications.

Control statements

» Decision making and Loop control structure

e Unconditional control transfer statements

Overview C program

* Cis a general-purpose, procedural, structured language.

e Computer programming language developed by Dennis MacAlistair
Ritchie was an American computer scientist. He created the C

programming language.

* C language was developed on UNIX and was invented to write UNIX

system software.
* It is portable and It can extend itself.

e Cis easy to learn.

Basic Structure of C program

Basic Structure of C Programs

Documentation Section

Link Section

Definition Section

Global Declaration Section

main() Function Section

{

Declaration Part
Executable Part

}

Subprogram Section
Function1
Function 2
Function3

Functionn

Basic Structure of C program

Documentation section :consists of a set of comment line giving the name of
the program, the author name, and other details. Compiler ignores these
comments when it translates the program into executable code.

C uses 2 different formats

1. Block comments /*this i1s multi line comments*/

2. Line comments //this Is single line comments

The Link section: provides instruction to the compiler to link functions from

system library. This Section is also called as pre-processor Statements.

Basic Structure of C program

The definition section: defines all symbolic constants
eq. #define Pl 3.1415.

Global Declaration section: there are some variables that are used Iin more
than on function, such a variable are called global variable and are declared
In the global declaration section that is outside of all functions. This section

also defines user defined functions.

Basic Structure of C program

Every C program must have one main () function section. This section contains two parts

declaration part and executable part

Declaration part : declares all the variables

Executable part: There is at least one statement in an executable part.

These two part must appear at the beginning of the brace and ends at the closing brace. All

statement in the declaration and executable part ends with semicolon (;).

The sub program section: contains all the user defined functions that are called in the main

function although they appear in any order.

Basic Structure of C program

/* Display my details */

#include <stdio.h> // PREPROCESSOR DIRECTIVES

void main() [/IMAIN FUNCTION/ENTRY POINT

{

printf("'Name: Amrutha\n''); //BODY OF MAIN FUNCTION
printf("'Dept: CSE\n"");

printf("'Collge: MITE\n");

}

[* C program to display Area of a circle */ // DOCUMENTATION SECTION
#include<stdio.h> // PREPROCESSOR DIRECTIVES
#define pi 3.142 /[DEFINITION SECTION

void hello(); /I GLOBAL DECLERATION
void main() [IMAIN FUNCTION/ENTRY POINT
{

Int r =5, Area,; INARIABLE DECLERATION

Area= pi*r*r,

printf(“Area of a Circle= %d\n"', Area); //BODY OF MAIN FUNCTION
}
void hello() [/ USER DEFINED FUNCTION

{ printf(""Hello");
}

Executing a C program

Step: 1 Creating a program

Preprocessor process the code &
compiler compiles

Linker links the object code with
the libraries

Loader loads the program
in memory

CPU executes each
instruction of the program

Write/Edit Source Code k

. |
EXe cu t N g d C (C Compiler >—. Compile Source Code

True
program @
No Error Logic Error
M_’ Linker 8: Loader
)
Input Data Execute Object Code

ogic/Data
Errors?

See Output

Files used in C program

A C program uses four types of files as follows:

» Source File

» Header File

» Object File

J Executable
File

Files used in C program

A C program uses four types of files as follows:

1. Source Code File

* This file includes the source code of the program.

* The extension for these kind of files are '.c’.
* It defines the main and many more functions written in C.
* main() Is the starting point of the program. It may also contain other

source code files.

Files used in C program

A C program uses four types of files as follows:

2. Header Files

They have an extension '.h'. They contain the C function declarations and macro definitions
that are shared between various source files.

C provides us with some standard header files which are available easily.

Common standard header files are:

1) string.h — used for handling string functions.

1) stdlib.h — used for some miscellaneous functions.

1) stdio.h — used for giving standardized input and output.

IvV) math.h — used for mathematical functions.

V) conio.h — used for clearing the screen.

Files used in C program

A C program uses four types of files as follows:

3. Object files

* They are the files that are generated by the compiler as the source code file is processed.

* These files generally contain the binary code of the function definitions.

* The object file is used by the linker for producing an executable file for combining the object
files together. It has a '.0" extension.

4. Executable file

* This file is generated by the linker.

*Various object files are linked by the linker for producing a binary file which will be
executed directly.

* They have an '.exe' extension.

Pre Processor Directives

Preprocessor Directives:-Preprocessor Is a program which is invoked by the
compiler before the compilation of the user written program.

—The declaration of preprocessor statements always begin with # symbol
—These statements are usually placed before the main() function.

Types of Preprocessors:-

—Macros

—File Inclusion

—Conditional compilation

—Other directives

Pre Processor Directives

Macros:-These are the piece of code In the program which Is given
some name.
* \Whenever the name Is encountered by the compiler in the program
, the compiler replaces the name with the actual piece of code.

e The “#define” directive Is used to define a macro.

Pre Processor Directives

Macros:-
[* C program to demonstrate macros */
Include<stdio.h>
define pi1 3.142
void main()
{
float r,area;
printf("Enter the value of radius\n");
scanf("'%f",&r);
area=pI*r*r;
printf("Area of circle = %f\n",area);

}

Pre Processor Directives

File Inclusion:-This type of preprocessor directive tells the compiler to

Include a file In the source code program

* These files contains the definition of the predefined functions like
printf(), scanf(), etc. Different functions are declared in different

header files.

Pre Processor Directives

File Inclusion:-

/* C program to demonstrate file inclusion */
Enter a number

#include<stdio.h> 5
#include<math.h> .
void main() squareroot= 2
{

Int num, root;

printf(*'Enter a number\n'’);
scanf(''%d"",&num);
root=sqgrt(num);
printf(“squareroot= %d\n"', root);

}

Pre Processor Directives

Conditional Compilation:-these are the type of directives that
helps to compile a specific portion of the program or to skip a

specific part of the program based on some conditions.

Some of the conditional compilation directive are: — #ifdef,

#ifndef, #if, #else

Pre Processor Directives
Conditional Compilation:-

[* C program to demonstrate use of #ifdef*/
#include<stdio.h>

#define age 18

void main()

{

#ifdef age

printf(""The person is eligible to vote");
#endif

}

Pre Processor Directives

Other Directives:-Apart from the above directive there are two more directives

which are not commonly used

#undef directive:-this directive Is used to undefined a value which was declare

using the #define directive

#pragma directive:-this directive is used in parallel programming (thread

programming) which is a major concept of operating system.

C Tokens

C has 6 Different types of tokens. C programs are written using these tokens.

i.Keywords : Keywords are reserved words that have special meaning in
compiler

ii. Identifiers: the names supplied for variables, types, functions, and labels
in the program

iii. Constants: is a name given to the variable whose values can't be altered
or changed.

iv. Strings: is a sequence of characters
v. Operators: Its is used to perform some operations

vi. Special symbols: the special symbols have some special meaning and
they cannot be used for other purposes.

C Tokens

C Tokens
Keywords Constants Strings Operators
int 15 “ HE! lo” +
char 0.26 Hai *
if -22 ++
while -
f - —
or Identifiers Special
const Symbols
marks
else amount []

()

C Tokens

* Identifiers: These are the names given to various elements of
the C program like variables, functions, arrays, etc. These are
user defined names and consist of sequence letters, digits or

underscore.

C Tokens

* Rules to define an Identifiers

1. The first character of the identifier must always be a letter or an underscore

followed by any number of letters digits or underscore.

2. Keywords cannot be used as identifiers or variables.

3. An ldentifier or a variable should not contain two consecutive underscores
4. Whitespaces and special symbols cannot be used to name the identifiers.

5. ldentifiers are case sensitive

Constants in C

* Constants refer to fixed values that the program may not alter during its

execution. These fixed values are also called literals.

* for example: 10, 20, 'a’, 3.4, "c programming" etc.

Constant Example

Decimal Constant 10, 20, 450 etc.

Real or Floating-point 10.3, 20.2, 450.6 etc.
Constant

Octal Constant 021, 033, 046 etc.
Hexadecimal Constant Ox2a, Ox7b, Oxaa etc.
Character Constant ‘a’, 'b', 'x' etc.

String Constant "c", "c program", "c in javatpoint" etc.

Constants in C

2 ways to define constant in C

1. const keyword

2. #define preprocessor int main()
1
#include<stdio.h > (.. "_,F'I)_;
int main{y{ 3

const float PI=3.14;
printf("'The value of Pl is: %t",PI);
return O

SO 1 e o P is: 3. 140000

Variables

* A variable is nothing but a name given to a storage area that our programs

can manipulate.

 Each variable in C has a specific type, which determines the size and layout

of the variable's memory.

* A variable can be composed of letters, digits, and the underscore character.

Variable Declaration

 Variables should be declared in the C program before it is used

data_type variable name;

Int age = 20; ~value
Data type Variable name
Void main()
{
Int a,b;

}

Types of Variables

1.Local Variable

A variable that is declared and used inside the function or block is called local

variable.

It cannot be used outside the block. Local variables need to be initialized before

use.

Types of Variables

2. Global Variable

A variable that is declared outside the function or block is called a global

variable.

It is declared at the starting of program. It is available to all the functions.

Rules To Declare Variables

Name your variables based on the terms of the subject area, so that the
variable name clearly describes its purpose.

Every variable name should start with alphabets or underscore ().

No spaces are allowed in variable declaration.

Except underscore (_) no other special symbol are allowed in the middle of the

variable declaration (not allowed -> roll-no, allowed -> roll _no).

Rules To Declare Variables

 Maximum length of variable is 8 characters depend on compiler.

* Every variable name always should exist in the left hand side of assignment
operator (invalid -> 10=a; valid -> a=10;).

* No keyword should access variable name (int for <- invalid because for is

keyword).

Types of Variables

HFinclude <stdio_hz>

f* global wariable declaration */
int g;

value of 53 = 110 , Bo= 20

int main () 1

* local wariable declaration */f

int a, b;

fF actual initialization */f

a = 1i&;
b = 20,

printf {("walue of a = %d, b = %d and g = Zd\n", a, b, g);:

return B;

Types of Variables

3. Static Variable
Static variables have a property of preserving their value even after they are

out of their scope.

A static variable is the one allocated “statically,” which means its lifetime is

throughout the program run.

It is declared with the 'static' keyword and persists its value across the function

calls.

Types of Variables

3. Static Variable By default

* which means the variable remains in memory throughout the life of
the program

#include <stdio.h>
Output:

void main()

{

I
o

d

static int a=0;
printf(“a=%d ", a);

}

Data Types usedin C

e String (or str or text). Used for a combination of any characters that

appear on a keyboard, such as letters, numbers and symbols.

* Character (or char). Used for single letters.

* Integer (or int). Used for whole numbers.

* Float (or Real). Used for numbers that contain decimal points, or

for fractions.

* Boolean (or bool). Used where data is restricted

to True/False or yes/no options.

Data Type used in Variables

Integer
Character
Float
Double
Bool
String

int 1, 1, k;
char c, ch;

float 1, salary;
double d;

bool a=true, b= false;

char a[10]="MITE"”;

Data Types usedin C

* Integer (or int). Used for whole numbers.

#include <stdio.h> Output:

void main() The integer value is: 5
{

inti=>5;

printf(“The integer value is: %d \n”, i);
}

Data Types usedin C

* Float (or Real). Used for numbers that contain decimal points, or

for fractions.

#include <stdio.h> Output:

void main() The float value is: 7.2357

{
float f =7.2357;

printf(“The float value is: %f \n”, f);
}

Data Types usedin C

e Character (or char). Used for single letters.

#include <stdio.h>

void main() Output:

{ The character value is: b
char c;

c="‘b’;

printf(“The character value is: %c \n”, c);

}

Data Types usedin C

 String (or str or text). Used for a combination of any characters

that appear on a keyboard, such as letters, numbers, alpha

numeric and symbols.

#include<stdio.h> Output:

int main() The string value
{ 1s :Greeks

char str[] = "Greeks";

printf(“The string value is %s",str);

¥

Data Types usedin C

* Boolean data type: Used to store true or false values.

#include <stdbool.h>
#include <stdio.h>
int main()

{

bool a=true, b=false;
printf("%d\n",a&&b);
printf("%d\n",a||b);
printf("%d\n",!b);

}

Operators used in C

* An operator is a symbol that tells the compiler to perform specific

mathematical or logical functions.

e C language has built-in operators & provides the following types of operators

1. Arithmetic Operators
Relational Operators
Logical Operators
Bitwise Operators
Assignment Operators

o Uk W

Misc Operators

1. Arithmetic Operators

An arithmetic operator performs mathematical operations such as addition,
subtraction, multiplication, division etc. on numerical values (constants and

Vda riables). Operator Meaning of Operator
+ addition or unary plus
- subtraction or unary minus
* multiplication
/ division

% remainder after division {modulo division)

1. Arithmetic Operators

#tinclude <stdio.h> // Working of arithmetic operators

int main()
{
inta = 9,b = 4; Cldlelflg;
c = a+b; //Addition ath

a-b
a*h
alb

printf("a+b = %d \n",c);
d= a-b; // Subtraction
printf("a-b = %d \n",d);
e= a*b; //Mutiplication
printf("a*b = %d \n",e);
f =a/b; //Division
printf("a/b = %d \n",f);
g = a%b; //Modulus
printf("Remainder when a divided by b = %d \n",g);

Remainder when a divided by b=1

2. Increment and Decrement Operators

C programming has two operators

P —

1)Increment ++ To change the value of an operand

2)Decrement -- of an operand (constant or variable) by 1.

—_—

Increment ++ increases the value by 1
Decrement -- decreases the value by 1.
These two operators are unary operators, meaning they only operate on a single

operand.

Increment Operators

* Increment Operators are the unary operators used to increment or add 1 to

the operand value.

* The Increment operand Is denoted by the double plus symbol (++). It has

two types:

Pre Increment and Post Increment Operators.

Increment Operators -Pre-increment Operator

The pre-increment operator is used to increase the original value of the operand

by 1 before assigning it to the expression.

#include<stdio.h>

void main()
{ inta=10,b;
Here first the value of a
b = ++a;
printf("b = %d\n\n", b); increments and then is assigned
printf("a = %d\n", a); to variable b. So both a and b

} value will be 11.

Increment Operators —Post-increment Operator

The post-increment operator is used to increment the original value of the

operand by 1 after assigning it to the expression.

#include<stdio.h>

void main()
{
inta =10, b;
b =a++;

printf("b = %d\n", b);
printf("a = %d\n", a);
}

Here first value of af(i.e., 10) is
assigned to b and then value of a is
incremented. Sob=10anda=11is

printed.

Decrement Operator

Pre-increment

H#include<stdio.h>

void main()
{
inta =10, b;
= --a;
printf("b = %d\n\n", b); Here first the value of a decrements
p;intf("a =%d\n", a); and then is assigned to variable b.

So both a and b value will be 9.

Decrement Operator

Post Decrement

H#include<stdio.h>

void main()

{
inta =10, b;
b= g3-: Here first value of af(i.e., 10) is
printf("b = %d\n\n", b); assigned to b and then value of a is
p;mtf(a=%d\n", a); decremented Sob=10anda=9is

printed.

3. Relational Operators

Relational operators in C are commonly used to check the relationship between

the two variables

#Finclude <stdio.h=> a > b: 1
INnt maing a > b: 1
{ a <= b: 0
M e = 2 a< b:o
int b = 4;

a == bhb: 0
printf{" a > b: %d \n", a > b); al=>b: 1

printf("a >= b: %d \wn'", a >= b);
printf("a <= b: %d \n", a <= b);
printf("a < b: %d\n", a < b);
printf{""a == b: %d \n", a == b);
printf{"a '= b: %%d \n'', a 1= b);

return O;

4. Logical Operators

These operators are used to perform logical operations on the given

expressions.
Operators Example/Description

Er 8 (lozical (X >51E8E(yv<5)

AT It returns true when both conditions are true

|| (logical (x>=10)| | {yv>=10)

OR) It returns true when at-least one of the condition
1s true

F {logical M {(x>5)88{y<5))

MNOT It reverses the state of the operand “{((x>5) &&
(y=53)"
If “{{x>5) && (y=5))" is true, logical NOT
operator males it false

4. Logical Operators

#include <stdio.h> . C e
, _ AND condition not satisfied
void main()

{ a 15 greater than b OR ¢ 1s equal to d

inta=10,b=4,c=10,d = 20;
if (@a>b &&c==4d)
printf("a is greater than b AND c is equal to d\n");

else
printf("AND condition not satisfied\n");
if(a>b || c==d)

printf("a is greater than b OR c is equal to d\n");
else
printf("Neither a is greater than b nor cis equal d\n ");

}

5. Bitwise Operators

* Bitwise operator works on bits and perform bit-by-bit operation.
* The truth tables for &, |, and A.

p { p&q Ju
0 0 0 0
0 1 0 1

Pty

5. Bitwise Operators

12 = 00001100 (In Binary)
Bitwise AND 25 = 00011001 (In Binary)

#include <stdio.h=
main{)

Bit Operation of 12 and 25
00001100
& 00011001

1
=12, b = 25:
printf("Output = %d", a&b);
0;

00001000 = 8 (In decimal)

Output =

5. Bitwise Operators

Bitwise OR ' 00001100 (In Binary)

#include <stdio.h=> 00011001 (In Binary)

main()
Bitwise OR Operation of 12 and 25

00001100
| 00011001

=12, b = 25:
printf("Output = %d", al|b);
0;

00011101 = 29 (In decimal)

Output = 29

5. Bitwise Operators

Bitwise Left Shift (<<): S

uft specified num

ber of bits to left side

70

|

X

0

1

0

0

0

1

l

0

5{-::::-::"7‘

" —

0

0

0

1

1

0

0

0

Bitwise Right Shift (>>): Shift specified number of bits to right side.

Empty boxes will be marked as zero] 24

X

0

1

0

0

0

1

1

X:::{:::— ;

ﬁ

-

0

0

0

1

0

0

0

6. Assighment Operators

Operator

Description

Simple assignment operator. Assigns values from right side
operands to left side operand

Add AND assignment operator. It adds the right operand to
the left operand and assign the result to the left operand.

Subtract AND assignment operator. It subtracts the right
operand from the left operand and assigns the result to the
left operand.

Multiply AND assignment operator. It multiplies the right
operand with the left operand and assigns the result to the
left operand.

Divide AND assignment operator. It divides the left operand
with the right operand and assigns the result to the left

nharannd

Example

C = A+ B will assign the value of A+
BtoC

C +=Ais equivalenttoC=C+A

C-=Ais equivalentto C=C-A

C "= Ais equivalenttoC=C ™A

C/=Ais equivalenttoC=C /A

6. Assighment Operators

0h=

LE=

e

Modulus AND assignment operator. It takes modulus using
two operands and assigns the result to the left operand.

Left shift AND assignment operator.

Right shift AND assignment operator.

Bitwise AND assignment operator.

Bitwise exclusive OR and assignment operator.

Bitwise inclusive OR and assignment operator.

C %=Ais equivalenttoC=C%A

Ce<=2issameasC=C<<2
Ce>=2issameasC=C>»>2
C&=2issameasC=C&2
Ch=2issameasC=C*"2

Cl=2issameasC=C|2

7. Misc Operators

Besides the operators discussed above, there are a few other

Important operators including sizeof and ? . supported by the C

Language.
Operator Description Example
sizeof() Returns the size of a variable. sizeof(a), where a is integer, will return 4.
& Returns the address of a variable. &a; returns the actual address of the variable.
’ Pointer to a variable. "a;
?: If Condition is true ? then value X : otherwise value

Conditional Expression. v

Expressions in C

An expression is a formula in which operands are linked to each other by the use of

operators to compute a value.
example: A*B

There are 4 types of expressions:
1. Arithmetic expressions
2. Relational expressions
3. Logical expressions
4

Conditional expressions

Expressions in C

1. Arithmetic Expressions
Addition (+), Subtraction(-), Multiplication(*), Division(/), Modulus(%), Increment(++) and

Decrement(—) operators are said to “Arithmetic expressions”.

This operator works in between operands. like A+B, A-B, A—, A++ etc.

2. Relational Expressions

== (equal to), != (not equal to), != (not equal to), > (greater than), < (less than), >= (greater
than or equal to), <= (less than or equal to) operators are said to “Relational expressions”.

This operators works in between operands. Used for comparing purpose. Like A==B, A!=B,

A>B, A<B etc.

Expressions in C

3. Logical Expressions
&&(Logical and), ||(Logical or) and !(Logical not) operators are said to “Logical
expressions”. Used to perform a logical operation.

This operator works in between operands. Like A&&B, A| |B,A!B etc.

4. Conditional Expressions
?(Question mark) and :(colon) are said to “Conditional expressions”. Used to perform a
conditional check. It has 3 expressions first expression is condition.

If it is true then execute expression2 and if it is false then execute expression3. Like

(A>B)?”Ais Big”:”B is Big”.

Evaluation of Expressions in C

Operator Description Associativity Precedence(Rank)
() Function call Loft 8o right l
[] Array element reference
+ Unary plus
- Unary minus
++ Increment
-- Decrement
' Logical negation Right to left N
~ Ones complement
* Pointer to reference
& Address
Sizeof Size of an object
(tvpe) Twvpe cast (conversion)
. Multiplication
/ Division Left to right 3
% Modulus
+ Addition :
- Subtraction Left to nght 4
<< Left shaft)
. Right Shift Left to nght 5

Evaluation of Expressions in C

< Less than
<= Less than or equal to _
Left to rnight
> Greater than
>= Greater than or equal to
- Equalltj:f Left to nght
= Inequality
Bitwise AND Left to right 8
| Bitwise XOR Left to right | 9
Bitwise OR Left to nght 10
Logical AND Left to nght 11
Logical OR Left to right 12
Conditional expression Right to left 13
= *= Assignment Right to left 14

Evaluation of Expressions in C

10 - 3% 8+6/4

17 - 8/4 " 2+ 3 - ++a a=5

Evaluation of Expressions in C

10 - 3% 8+6/4

10 -3 + 6/4
| |

10 - 3 + 1

—
7 + 1

8

Evaluation of Expressions in C

17 - 8/4 " 2+ 3 - ++a a=5
|
17 - 8/4*2+3 - 6 ++a Is Incrementtor so
| Executed First
17 - 2°2+3 - 6
[
17 - 443 - 6 10+4*3/2
] 1+2*5+3
13 +3.6 4-2+6*3
| a+b*a/b-a%b -> a=10,b=2
16 - 6
I

Evaluation of Expressions in C

1. If a=8, b=15 and c=4 calculate the expression
2*((a%5)*(4+(b-3)/(c+2)))

2. Evaluate the expression
a+=b *=c-=5, Given a=3, b=5, c=8.

3. Evaluate the expression

100 /20<=10-5+100%10-20==5>=11=20

Evaluation of Expressions in C

1. If a=8, b=15 and c=4 calculate the expression

2% ((a%5)*(4+(b-3)/(c+2)))
=2*((8%5)*(4+(15-3)/(4+2))) //Substitution of values

=2*3*(4+(15-3)/(4+2))) //Brackets having the highest priority

=2*(3*(4+12 /(4+2))) //inner most brackets are evaluated first

=2*(3*(4+12 [6)) //Brackets having the highest prionty

=2*(3*(4+2)) //within the brackets ¢/’ has the highest priority

=2*(3*6) //inner most brackets are evaluated

=2 * 18 // Brackets having the highest priority

= 36 //Final Result

Evaluation of Expressions in C

+= b *= ¢ -=5 , Given a=3, b=5, c=8.

+=b *= ¢ -=5 //Apply Associativity 1.e. evaluate from right to left
+=b*=(c=c—-95) //Deduce the short hand Expression
+=b*=(c=8-5) //Substitute the given value of ¢

+=b*=({ec=3) //Reduce the equation to simplified form

+=b *= 3 / [Apply Associativity 1.e. evaluate from right to left

+=(b=b*3) //Deduce the short hand Expression
+=(b=5%*3) //Substitute the given value of b

+= (b =15) //Reduce the equation to simplified form

+ =15 [[Apply Associativity 1.e. evaluate from right to left

=1

&

el

a+ 15 // Deduce the short hand Expression
=3 + 15 //Substitute the given value of a

=18 // Final Result

Evaluation of Expressions in C
100 /20<=10-5+100% 10-20==5>=11=20
— 100 /20<=10-5+100% 10-20==5>=11=20

—5<=10-5+100% 10-20==5>=11=20

—-5<=10-5+0-20==5>=11=20

—5<=5+0-20==5>=11=20

—5<=8-20==5>=11=20

— 98 <=-15==52>=11=20// Simplify the relational operators

— 0==5>=11!=20 //True is given by 1 and false i1s given by 0

Writing C expressions for Mathematical Expressions
Basic Conversions

x — Xy
}J’

Vv — sqrt(v)
'h| — abs(h)
g — pow(g.l)
e* — exp(x)

sin X — sin (X)

sin 45° — sin ((45 * 3.142)/ 180) /*converting degrees to radians™/

Write the C equivalent expressions for the following mathematical Expressions

5x+3y
1. A=] A=((5*x)+(3*y))/(a+Db)
2. C = eV 100 e p(abs(x+y-10))
E?E‘l—EJ:F
3.P = _ — P=(exp(sqrt(x))+texp(sqt(y)))/(Xx*sm(sqt(vy))
xsinyy
—b+Vb%2—4ac
4. X = X=((-b) +sqrt(b*b-4*a*c))/(2%a)

2a

Input/output statements in C

 Reading, processing, and writing of data are the three essential functional

functions of a computer program input and output operations.

* There are two methods of providing data to the program variables.
v One method is to assign values to variables(variable declaration)

v Another method for outputting results extensively(printf)

Input/output statements in C

« All Input/output operations are carried out through function calls such

as printf and scanf.
 These functions are predefined in the respective header files.

 The Input and output functions are used In the program whose functionality are

predefined In the header file “#include<stdio.h>"

MANAGING INPUT AND OUTPUT

Input and out

out functions are broadly classified into

A)Formatted Input Formatted Output
scanf () printf()
B) Unformatted Input Unformatted Output
1) getch() 1) putch()
2) getche() 2) putchar()

3) getchar()

MANAGING INPUT AND OUTPUT

A) Formatted Output:

1. printf(): itis a predefined function from the header<stdio.h>

It Is used to write the formatted output.

printf : syntax printf(“format specifier”,varl,var 2),

* The number of format specifier must match the number of variables In the

variable list.

MANAGING INPUT AND OUTPUT

A) Formatted Output:

1. printf():
printf(“%d%c”,varl,var 2);

 format specifier indicates the type of data to be displayed

« variable list indicates the value present in the variable

MANAGING INPUT AND OUTPUT

A) Formatted Input:
1. scanf():

« scanf() function reads all type of data value from input device or from a file.

* The address operator “&” 1Is used to Indicate the memory location of the

variable.

* This memory location iIs used to store the data which is read through the

keyboard

MANAGING INPUT AND OUTPUT

A) Formatted Input:
1. scanf():

* syntax: scanf(“format specifier”,addresslist),

» format specifier indicates the type of data to be stored in the variable.

e address list indicates the location of the variable where the value of the data 1s
to be stored

scanf(“%d %d”,&valuel,&value 2);

Format specifications

Data type Format specifier
Integer short signed %d or %I
short unsigned %u
long singed %lId
long unsigned %lu
unsigned hexadecimal | %x
unsigned octal %0
Real float %f
double %It
Character signed character %c¢
unsigned character %%cC
String %S

88

C program to demonstrate Formatted Input and Output
Statements

#include<stdio.h>

void main() I1Enter' three numbers

{ 3

. ; TG

Inta, b’ ¢, sum, Addition of three Numbers=80

printf(“Enter three numbers\n™);
scanf(“%d%d%d”,&a,&b&c);
sum=a+b+c;

printf(“ Addition of three Numbers=%d\n”,sum);
¥

C program to find the area of circle by reading the input from
keyboard

#include<stdio.h>

#define pi 3.14 enter the radius of a circle

Int main() :

{. _ area of a circle is:/8.500000
Intr;
float area;

printf(*'enter the radius of a circle\n"");
scanf(*'%d",&r);

area=3.14*r*r;

printf(**area of a circle is:%f"",area);
return O;

}

C program to find the area of circle by reading the input from
keyboard

#include<stdio.h> enter the radius of a circle
Int main() 5

{ enter the value of pi

Intr; 3.14

float pi area: area of 3 circle is:78.500000

printf(**enter the radius of a circle\n™);

scanf(*'%d",&r);

printf(*'enter the value of pi\n"’);
scanf(''%f"",&pi);

area=pi*r*r,

printf(**area of a circle is:%f" ,area);
return O;

}

MANAGING INPUT AND OUTPUT
B) UnFormatted Input: b) getch(): pauses the Output Console until

a key is pressed Waiting for a character to be pressed from the keyboard to exit.

#include<stdio.h>

#include<conio.h> Process exited after 1.317 seconds with return value 0
' Press any key to continue . . .

void main()

{

printf("Waiting for a character to be pressed from the keyboard to
exit.\n");

getch();
¥

MANAGING INPUT AND OUTPUT

B) UnFormatted Input: a) getche(): to read a single character from the keyboard

which displays immediately on screen without waiting for the enter key

#include<stdio.h> lating for & character to be

#include<conio.h> pressed fron the keyboard to exit.
void main()

{

printf("Waiting for a character to be pressed from the keyboard to exit.\n");
getche();

}

MANAGING INPUT AND OUTPUT

B) UnFormatted Input: c) getchar(): reads a single character from the standard input

stream stdin, regardless of what it is, and returns it to the program.

#include<stdio.h> Enter a character

volid main() a
{ The entered character 1s a

char ch;

printf("Enter a character\n");
ch=getchar();

printf("The entered character Is %c\n",ch);

}

MANAGING INPUT AND OUTPUT
B) UnFormatted Output: putchar(), puts()

putchar() function Is used to write a character on standard
output/screen.

putchar()
In a C program, we can use putchar function as below.
putchar(char); where, char is a character variable/value.

puts() Used to print the string variable/value.

MANAGING INPUT AND OUTPUT
B) UnFormatted Output: getchar() and putchar()

#include<stdio.h> Enter a character
It main() The entered character 1is
{

char ch;

printf("Enter a character\n");
ch=getchar();

printf("The entered character is \n");
putchar(ch);

return O;

J

MANAGING INPUT AND OUTPUT
B) UnFormatted Output: gets() and puts()

#include<stdio.h> ,
int main() Enter the string? MITE

{ You entered a string called:MITE

char s[30];

printf("Enter the string? ");
gets(s);

printf("You entered a string called:");
puts(s);

return O;

Type Conversion:

Implicit Type Conversion: This type of conversion is done by the compiler, so

it is called as implicit type conversion. Without user intervention this process

is carried out.

* Whenever we are converting narrow operand (lower data type variable)
into wide operand (higher data type variable) then compiler will do it

implicitly.

Type Conversion:

Implicit Type Conversion

#include<stdio.h>
void main()

{

char b= ‘A’;

Int a;

a=b;
printf(“%d”,a);
}

OUTPUT: 65

Type Conversion:

Explicit Type Conversion/Type casting: This type of conversion is done by the
user, Instead of being done automatically according to the rules of the

language for implicit type conversion so it is called explicit type conversion.

Type casting Is a mechanism in which one data type iIs converted to another data
type using a casting () operator by a programmer.
Type conversion allows a compiler to convert one data type to another data

type at the compile time of a program or code.

Type Conversion:

It is a process of converting an expression from one data type to
another data type

There are two types:

Implicit Type conversion

Explicit Type Conversion

Type Conversion:

Implicit Type Conversion

#include<stdio.h>
void main()

{

char b= ‘A’;

Int a;

a=b;
printf(“%d”,a);
}

OUTPUT: 65

Type Conversion:

Explicit Type Conversion:

#include<stdio.h> #include<stdio.h>
~void main(){ void main(){
int x=7, y=5; int x=7, y=5;
float z; float z;
z = X/y,; Explicit type conversion z = (float)x/(float)y;
printf("z:%f",z); printf("z:%f",z);
S I

z:.1.000000 z:1.400000

Conditional Branching and Loops.

Conditional statements

e Conditional statements are used to execute A set of statements on some

conditions.

* It provides A unit of block in which we can either execute one statement

or more than one statements.

 If the given condition is true then the set of statements are executed

otherwise body Is skipped and next statement will be executed..

Conditional statements

 There are different types of Conditional statements
* |F Condition
 |[F ELSE Condition
* Nested IF ELSE condition
* Cascaded if-else or else if ladder

e Switch Case

Conditional statements

1. IF CONDITION

* |t is conditional statement, which is used to execute a set of statement on

some conditions.
* The condition must be of Boolean type expression.

* An expression, which returns only two value either TRUE or FALSE, is known

as Boolean type expression.

Conditional statements

1. IF CONDITION

If condition
is true

Syntax: if (condition)

|

conditional code

If condition
is false

If the Boolean expression evaluates to true, then the

block of code inside the 'if' statement will be executed. I

If the Boolean expression evaluates to false, then the @

first set of code after the end of the 'if' statement will

108

be executed

Conditional statements
1. IF CONDITION

#include<stdio.h>
Int main()

{

INt number;

enter a number:&

_ enter a number:10
printf("enter anumber:™); T ETIRT RSN LA I

scanf(*'%d",&number);
If(number==10)
printf(*'number is equals to 10™);

return O;

}

Conditional statements

2. IF ELSE CONDITION

[t 1S known as double blocked conditional statements.
* It means, It has TRUE parts as well as FALSE part.

* |f the given condition Is true then the true part Is executed otherwise false part

IS executed.

Conditional statements v

2. IF ELSE CONDITION
Syntax: - if (CONDITION)

True

(P

} Code Inside
else False If bOdy
(TP V

}

Code Inside
else body

If condition returns true then the statements inside
the body of “if” are executed and the statements
Inside body of “else” are skipped.
If condition returns false then the statements inside
the body of “if” are skipped and the statements In
“else” are executed.

111

Conditional statements

#include <stdio h> You are eligible to vote...

Int main()
1
Int age;
printf(“Enter your age?"); Enter your age?15
scant("%d", &age); Sorry ... you can't vote
If(age>=18)
1
printf("You are eligible to vote...");
}
else
1

printf("Sorry ... you can't vote");

¥

Conditional statements
3. NESTED IF ELSE

* Using One If Statement Within Another If Statement Is Known As Nested If

else Statement.

* Nested if statements are often used when you must test a combination of

conditions before deciding on the proper action.

Conditional statements

3. NESTED IF ELSE

syntax-

If(conditional_expressionl)

{

}

else

{

If(conditional_expression2)

{

statementl;

}

else

{

statement2;

}

statement 3;

}

Test
Expression

Test
Expression

FALSE

FALSE

Body of if

(S'IEEDP)

114

Conditional statements
3. NESTED IF ELSE

#include <stdio.h=

void main()

|

int numl, num2, num3, small;
printf("\nEnter Three numbers = ");
scant("%d%d%d", &num1l, &num2, &num3);
1f(numl< num2)
{

1T (numl<num3)

small=numi;
else
small=num3;

}

else
{
1f(num2 < num3)
small=num2;
else
small=num3;

h

printt("\nsmallest number = %d", small);

115

Conditional statements

4. Cascaded if-else or else if ladder

* With an if or if/else statement we evaluate a single true/false condition. A
cascaded if statement, on the other hand, makes it possible to evaluate
several conditions in a row. This type of if statement has several if code

blocks placed below each other, with optional else code at the end.

* Here the conditions are evaluated from top to bottom. As soon as the true
condition i1s found the statement associated with it 1s executed and the control

IS transferred to statement X, skipping the rest of the ladder.

Conditional statements

4. Cascaded if-else or else if ladder ﬁ_--f-fi«-a_ﬁ TRUE
’:::_"h—-_,_ynul_lillt‘jﬂn { —»| Statement 1
Syntax: if(condition 1) lff"*LSE
statement 1: % T TRUE [—
else if{condition 2) - TT—sondition 2 —— L
= I]-Z—KLSE
statement 2: v
. .. . T T TRUE
else if(condition 3) - P— > Statement 3
r —a_lgljﬂltl_tit_l_l_j,f-
statement 3: IHLE‘E
_,_f—ff"f:_ﬂ“‘“ﬁ—»-‘_ TRUE
...................... -=:::______h__£““ dition n_— L — | Statement n
else if(condition n) l -
statement 1n: —
E'.ISE Statement
default statement: l“

statement X 117

Conditional statements Enter the Average marks

4. Cascaded if-else or else if ladder 0
. . Distinction
#include<stdio.h>
void main() Enter the Average marks
} 9
float avg; First Division
printf(“Enter the Average marks\n™);
scanf(“%ft”,&avg); Enter the Average marks
if(avg>=80) 29 .
printf(“Distinction\n™); Second Division
else 1f(avg>=60)
printf(“First Division\n™); Enter the Average marks
else if(avg>=50) 41

printf(“Second Division\n™); Third Division

else 1f(avg>=40)

printf(““Third Division\n™); ggter the Auerage marks

else

Fail

printf(“Fail\n™);

Conditional statements
5. SWITCH CASE CONDITION

* It 1s multiple conditioned checking statements, which is generally used for

menu- driven program.

* Where we have to select one option out of several options at a time. The
number of —case within switch — statement Is same as the number of

options present in menu.

* Each —case Is used to do only one work at a time.

Conditional statements

5. SWITCH CASE CONDITION
switch(expression)

{

case constantl: statement
seguence

break;

case constant?: statement
seguence

break;

Syntax:

default: statement sequence
break;

}

+ - .
#include <stdic.h>» Enter an ﬂF'E"'E'tﬂr' (1 1 *)
int main() { Enter two operands:

char operation; Y
double nl, nZ;
printf{"Enter an operator {+, -, *}: "}; 2
scanf{"%c", Zoperation); 4.0 + 5.0 = 9.0
printf{"Enter two operands: "};
scanf{"%lf %1f",%n1, Zn2);
switch{operation)
{ ter an operator (+, -, x):
; case '+ ': .

: printf{"%.11f + %.11f = %.11f",nl, n2, nl+n2); ter two ﬂperﬁndﬁ. 9

: break;

case '-':

' printf{"%.11f - %.11f = %.11f",nl, n2, nl-n2);

: break;

case 'F':

' orintf("%.11f * %.11f = %.11f",n1l, n2, nl*n2);

0 x5.0=250

b k;
o Enter an operator (+, -, %): 7
~ default: Enter two operands: 6
: printf{"Error! operator is not correct"); ?
}
return 0; Error! operator 1s not correct

#include <stdio.h> NESTED IF ELSE // Write a C program to check whether the

void main() person is eligible for work using nested if
{
Int age; 1) If age is in between 18 — 60 eligible to
printf(*'Please Enter Your Age Here:\n""); work
|IO e .
Siia(zg(e :idlé;&age), 2) If age >60 too old to work
if(age <= 60) 3) If age< 18 not eligible to work

{ e
: - Please Enter nr Age Here:
printf(*"You are Eligible to Work \n""); ﬂlea < mhLel Iour 8ge Here
di You are Eligible to Work
{

Please Enter Your Age Here:

printf(""You are too old to work \n"');

} oD
else You are too old to work
{
printf(*'Not Eligible to Work™); Please Enter Your Age Here:
} 16

} Not Eligible to Work

#include <stdio.h>

void main()

{

INt num:;

printf(*'Enter a number:\n*);

scanf(*'%d", &num);

If (num > 0)
{
printf(*'Positive");
}
else if(num < 0)
{
printf(**"Negative');
}
else
{
printf(*'Zero");
}

Cascaded if-else or else if ladder

// C Program to check whether
a number 1is positive,

negative or zero using if else

if ladder - e
Enter a number:

5

Positive

Enter a number
0

Enter a number:

#include<stdio.h>
void main()

{

}

Int Semester;
printf(“Enter the Semester number:\n ");
scanf("'%d"", &Semester);
printf(**The semester you selected is : **);
switch (Semester) {
case 1:
printf("'First");
break;
case 2:
printf(*'Second");
break;
case 3:
printf(*"Third");
break;
default:
printf(*'Invalid Input");
break;

}

Switch Statement

// C Program to display the
semester in which student is
studying using switch
statement

enter the Semester number:
3
The semester you selected 1s : Third

enter the Semester number:
1
The semester you selected 1s : First

Introduction to Conditional looping statements.

* A set of statements have to be repeatedly executed for a specified number of

times until a condition is satisfied.

* The statements that help us to execute the set of statements repeatedly are

called as looping condition.

Introduction to Conditional looping statements.

* The various looping constructs in C are:
(i) while Loop
(ii) do-while Loop

(iii) for Loop structs or loop control statements.

Introduction to Conditional looping statements.

(i) while Loop

* The while loop evaluates the test Expression inside the parentheses ().

o If test Expression iIs true, statements inside the body of while loop are
executed. Then, test Expression is evaluated again.

* The process goes on until test Expression is evaluated to false.

o If test Expression is false, the loop terminates (ends).

Introduction to Conditional looping statements.

(i) while Loop

Initialization:

Test False

Expression

hile(test condition)

{

set of statements to be executed
Including Increment/decrement
opetator

while Loop Body

}

128

Introduction to Conditional looping statements.

(i) while Loop

#include<stdio.h> // Print numbers from1to5
Int main()
{
Inti=1;
while (I <= 5)
{
printf(*'%d\n"', 1);
++1;
}

return O;

}

Introduction to Conditional looping statements.
(i) while Loop

Step 1: initialized 1 to 1.

Step 2:When i = 1, the test expression | <=5 is true. Hence, the body of the while loop is

executed. This prints 1 on the screen and the value of i is increased to 2.

Step 3:Now, 1 = 2, the test expression 1 <=5 is again true. The body of the while loop is

executed again. This prints 2 on the screen and the value of I Is increased to 3.

Step4: This process goes on until 1 becomes 6. Then, the test expression 1 <= 5 will

be false and the loop terminates.

Introduction to Conditional looping statements.
(i) while Loop

Enter a number: 3

#include<stdio.h> 8
int main(){ 1;}
Int 1I=1,number; 32
printf("Enter a number: "); 40
scanf("%d",&number); ;2
while(i<=10){ 64
printf("%d \n",(number*i)); s
I++:

¥

return O;

}

Introduction to Conditional looping statements.

(i) do- while Loop

« A do-while loop is similar to the while loop except that the condition iIs always executed

after the body of a loop. It is also called an exit-controlled loop.

« The body is executed if and only if the condition is true. In some cases, we have to execute
a body of the loop at least once even if the condition is false.

« This type of operation can be achieved by using a do-while loop. In the do-while loop, the

body of a loop is always executed at least once.

Introduction to Conditional looping statements.
(i) do- while Loop

do..while Loop Body

do

Test
Expression

// the body of the loop

}

hile (testExpression);

133

Introduction to Conditional looping statements.

(i) do- while Loop

The body of do..while loop Is executed once. Only then,
the testExpression Is evaluated.

o If testExpression Is true, the body of the loop Is executed
again and testExpression Is evaluated once more.

* This process goes on until testExpression becomes false.

* If testExpression is false, the loop ends.

Introduction to Conditional looping statements.

(i) do- while Loop Ualue of variable j i
Ualue of variable j 1

#include <stdio.h> Ualue of variable] .

?“'na"ﬂ) Ualue of variable j 1
int j=0;
do
{ int j=4;

printf("Value of variable j is: %d\n", j);

j+t;
} Value of variable j is: 4

while (j<=3);
return O;

}

Introduction to Conditional looping statements.
(i) do- while Loop

#finclude<stdio.h> // Program to add numbers until the user enters zero
int main()

{ humber :
int number, sum =0; humber :
do number :
{ / the body of the loop is executed at least once humber :

humber :

rintf("Enter a number: ");
P () humber :

scanf("%d", &number);
sum += number;

}

while(number != 0); Enter a number:
printf("Sum = %d",sum); : 0

return O;

Introduction to Conditional looping statements.

Difference between While and do- while Loop

VWhile loop

Do while loop

Syntax
immtialization:
while(test condition)
{
set of statements to be executed
including increment/decrement
opetator

}

Syntax:

imtialization;

do

{
set of statements to be executed
mcluding increment/decrement

opetator

twhile(test condition);

Condition 1s checked first.

Condition 15 checked later.

Since condition 1s checked first.

statements may or may not get executed.

Simce condition 1s checked later, the body
statements will execute at least once.

The main feature of the while loop 1s.1ts
an entry controlled loop.

The man feature of the do while loops 1s 1t 15
an exit controlled loop

37

Introduction to Conditional looping statements.

Difference between While and do- while Loop

#include<stdio h> #include<stdio h>
void main() void main()
{ (
mf1; it 1;
=1 i=1:
wlile(1<=5) do
{ {
printf(“%d't < 1); printf(“%d't < 1);
1++: 1++:
} while(1<=5);
h J

Introduction to Conditional looping statements.

(iii) for loop

A for loop is a more efficient loop structure in 'C' programming which is used when

the loop has to be traversed for a fixed number of times. The for loop basically works

on three major aspects
(i) The initial value of the for loop is performed only once.

(ii) The condition is a Boolean expression that tests and compares the counter to a

fixed value after each iteration, stopping the for loop when false is returned.

(iii) The incrementation /decrementation increases (or decreases) the counter by a

set value.

Introduction to Conditional looping statements.

(iii) for loop

Syntax: for (initial value; condition; incrementation or decrementation)

{

statements;

}

Initilization Expression

Test False
Expression

for Loop Body

update Expression
l 140

Introduction to Conditional looping statements.
(iii) for loop

/I Print numbers from 1 to 10
#include <stdio.h> -| 2 3 4 5 B T 8 9 w
Int main() {
INt 1;
for(i=1;i<11; ++i)
{
printf(*'%d "', 1);
}

return O;

}

3. Write a C program to print sum of first n natural numbers using
for loop

#include<stdio.h>

void main()

{

Int N, sum=0;

printf(“Enter the value of n\n”);
scanf(“%d”,&n);
for(i=1;i<=n;i++)

{

sum=sum-+i;

}

printf(“Sum of natural numbers=%d\n”,sum);

}

Introduction to Conditional looping statements.

Command

Iterations

Initialization

Use

For LOOP While loop

The structure of for loop iIs —
for(initial condition;
number of iterations){//body
of the loop }

Structure of while loop Is-
While(condition){statements
,//body}

Iterates for a preset number Iterates till a condition is
of times. met.

Initialization in for loop is
done only once when the
program starts.

Initialization is done every
time the loop is iterated.

Used to obtain the result Used to satisfy the condition
only when the number of when the number of
iterations is known. Iterations is unknown.

Introduction to Conditional looping statements.

(iii) for loop

1.iis initialized to 1.

2.The test expression |1 < 11 is evaluated. Since 1 less than 11 is true, the body of for loop iIs
executed. This will print the 1 (value of 1) on the screen.

3.The update statement ++1 Is executed. Now, the value of 1 will be 2. Again, the test expression
IS evaluated to true, and the body of for loop is executed. This will print 2 (value of 1) on the
screen.

4.Again, the update statement ++i iIs executed and the test expression 1 < 11 is evaluated. This
process goes on until 1 becomes 11.

5.When i becomes 11, 1 < 11 will be false, and the for loop terminates.

Introduction to Conditional looping statements.

(iv) Nested for loop

* Nested loop means a loop statement inside another loop statement. That is

why nested loops are also called as “loop inside loop®.

* In nested for loop one or more statements can be included in the body of the

loop.

* In nested for loop, The number of iterations will be equal to the number of
iterations in the outer loop multiplies by the number of iterations in the inner

loop.

Introduction to Conditional looping statements.

(iv) Nested for loop

* When the control moves from outer loop to inner loop the control remains
in the inner loop until the inner loop condition fails, once the condition fails
the control continues with the outer loop condition Again when the control

comes to inner loop the inner loop is reset to the initial value.

 The Nested for loop stops execution when the outer for loop condition fails

Introduction to Conditional looping statements.

(iv) Nested for loop

Syntax:

for { 1nit; condition; 1ncrement) {

for { 1nit; conditlon; 1lncrement) {
statement(s);

}
statement(s);

Introduction to Conditional looping statements.

Initialization

{iv) Nested for loop

Condition1 - Increment/
Decrement
Increment/
P
Decrement

|

148

Introduction to Conditional looping statements.

(iv) Nested for loop #include <stdio.h>

Int main()

{

Int a, b;

for(a=1; a<=5; at++) Output for
{ inner loop

for(b=1; b<=5; b++)

{
printf(*'%d "', b);

}
printf(*"\n"");

}

return O;

}

Introduction to Conditional looping statements.

(iv) Nested for loop ﬁ"?ﬂ:ﬁﬁgs{td'o'h>

INt 1, J, rows;

printf(*'Enter the number of rows: '');
scanf(*'%d"", &rows);

Enter the number of rows: 6 for (i = 1; i <= rows; ++i) Output for
{ inner loop
for (j =1;) <=1; ++j)
{ Enter the number of rows: b6
printf(*'* '"); X X X % % %
}
printf(*'\n"");
}
return 0O;

}

UnConditional looping statements.

e An unconditional statements are the statements which transfer the control
or flow of execution unconditionally to another block of statements. They are

also called jump statements.
* There are four types of unconditional control transfer statements.
(i) break
(if)continue
(iii) goto

(iv)return

UnConditional looping statements.

i) break Statement: A break statement terminates the execution of the loop and
the control is transferred to the statement immediately following the loop. i.e.,

the break statement is used to terminate loops or to exit from a switch.

Syntax :

Jump-statement;

break;

UnConditional looping statements.

i) break Statement:

#include<stdio.h>

void main()
{
int i=1;

while(i<=5)

{

if(i==3)

break;
printf(“%d\t”,i);
i++;

J
}

UnConditional looping statements.

(ii) continue statement: The continue statement is used to bypass the

remainder of the current pass through a loop.
The loop does not terminate when a continue statement is encountered.

Instead, the remaining loop statements are skipped and the computation

proceeds directly to the next pass through the loop.

UnConditional looping statements.

(ii) continue statement:

It is simply written as “continue”. The continue statement tells the compiler “Skip

the following Statements and continue with the next Iteration”.

Syntax :
Jump-statement;

Continue;

UnConditional looping statements.

(ii) continue statement:

#include<stdio.h>
int main()

{

int i=0;
for(i=0;i<=4;i++)

{

if(i==3)

continue;
printf("%d\t",i);

}

return O;

}

UnConditional looping statements.

(iii)goto statement :

C supports the “goto” statement to branch unconditionally from one point to

another in the program.

Although it may not be essential to use the “goto” statement in a highly
structured language like “C”, there may be occasions when the use of goto is

necessary.

UnConditional looping statements.

(iii)goto statement :

The goto requires a label in order to identify the place where the branch is to be

made. A label is any valid variable name and must be followed by a colon (:).

The label is placed immediately before the statement where the control is to be

transferred.

The label can be anywhere in the program either before or after the goto label

statement.

UnConditional looping statements.

(iii)goto statement :

Syntax:
goto label;
Forward jump Backward jump
""""""" goto label; label: statement;
""""""" label: statement; goto label;

label: statement;
If the label statement is below the goto statement then it is called forward
jump. if the label statement is above the goto statement then it is called

backward jump

UnConditional looping statements.

(iii)goto statement :

#include<stdio.h>
void main()

{

printf(“MITE \t”);
printf(“is \t In\t”);
printf(“Moodbidri\n”);
}

1n Hoodbidrl

#include<stdio.h>

Int main()

{

printf(“MITE \t”);
goto labell;

printf(“is \t IN\t”);
labell:
printf(“Moodbidri\n”);
Return O;

}
MITE Moodbidri

Write a C Program to check if the entered number is positive Negative or Zero

using goto statement..

#include<stdio. h>
#include<stdlib.hz
int maind)
1
int nums;
printf{"Enter the numberin");
scant ("2%d" ,&num);
ifF{num==0)
goto Fero;
else if{num>2)
goto pos;
alse
goto neg;
zero: printf{"The entered number is Zeroin"};
ex1t{0);
pos: printf{"The entered number is Positivel\n");
ex1t{d);
neg: printf{"The entered number is MNegativei\n");
ex1t{d);
T

Enter the number
4]
The entered number 1s Zero

Enter the number
9
The entered number 1s Positive

Enter the number
-8
The entered number 1s Negative

UnConditional looping statements.

(iv) return statement :

 The return statement terminates the execution of a function and returns

control to the calling function.

« Execution resumes In the calling function at the point immediately

following the call. A return statement can also return a value to the calling

function.
* Syntax :

Jump-statement:

return expression;

UnConditional looping statements.

(iv) return statement :

#include <stdio.h>
void print() // User defined Function

{

printf("Welcome to C Programming");

¥

Int main()

{
// Calling print

print();

return O;

¥

3. Write a C program to print sum of first n natural numbers using
for loop

#include<stdio.h>

void main()

{

Int N, sum=0;

printf(“Enter the value of n\n”);
scanf(“%d”,&n);
for(i=1;i<=n;i++)

{

sum=sum-+i;

}

printf(“Sum of natural numbers=%d\n”,sum);

}

4. Write a C program to print fibonacci series up to n numbers using for
loop

#include<stdio.h> else

void main() printf("%d\n%d\n",fib1,fib2)
{ for(i=3;i<=n;i++)

int n,i,fib1,fib2,fib3=0; {

printf("Enter the number of series to to be genetared:"); fih3=fib1+fib2;
scanf("%d",&n); printf("%d\n",fib3);
fib1=0; fib1=fib2;

fib2=1; fib2=fib3;

if(n==1) }
printf("%d\n",fib1);)

else if(n==2)

printf("%d\n%d\n",fib1,fib2);

4. Write a C program to print factorial of a given n numbers using for loop

#include<stdio.h>
Void main()

{

Int 1,fact=1,number;
printf("Enter a number: ");
scanf("%d",&number);
for(i=1;i<=number;i++)

{
fact=fact*i;

}

printf("Factorial of %d is: %d", number, fact);

¥

Write a C program to determine eligibility for admission to a professional

course based on the following criteria:

Eligibility Criteria: Marks in Maths >=65 and Marks in Phy >=55 and

Marks in Chem>=50 and Total in all three subjects >=190 or Total In

Maths and Physics >=140.
Input the marks obtained in Physics:65
Input the marks obtained in Chemistry:51
Input the marks obtained in Mathematics:72
Total marks of Maths, Physics and Chemistry: 188
Total marks of Maths and Physics: 137 The candidate is not eligible.

#include <stdio.h>

void main()

1 int p,c,m,t,mp;
printf("Eligibility Criteria :\n");
printf("Marks in Maths »=65, Phy »=55, Chem==50 \n");
printf("and Total in all three subjects >=190 or Total in Maths and Physics >=140\n");
printf("Input the marks obtained in Physics :");
scanf("%d",&p);
printf("Input the marks obtained in Chemistry :");
scanf("%d",&c);
printf("Input the marks obtained in Mathematics :");

scanf("%d",&m); 168

printf("Input the marks obtained in Mathematics :");
scanf("%d",&m);
printf("Total marks of Maths, Physics and Chemistry : %d\n",m+p+c);
printf("Total marks of Maths and Physics : %d\n",m+p);
if (m>=65 && p>=55 && c>=50)
if({m+p+c)>=190| | (m+p)==140)
printf("The candidate is eligible for admission.\n");
else
printf("The candidate is not eligible.\n");
else
printf("The candidate is not eligible.\n");

169

