
MODULE-3

ARRAYS AND STRINGS

1

Arrays

2

Contents

• Arrays (1-D, 2-D),

• Character arrays and Strings,

• Basic Algorithms: Searching and Sorting Algorithms

• Linear search

• Binary search

• Bubble sort and Selection sort

3

Arrays

An array is a collection of elements of the same type that are

referenced by a common name.

Arrays are the data types in C which can store the primitive data

type of data such as int, char, double, float.

• Consider a situation, where we need to store 5 integer numbers.

4

Arrays
#include<stdio.h>

int main()

{

int number1=10;

int number2=20;

int number3=30;

int number4=40;

int number5=50;

printf("number1: %d \n", number1);

printf("number2: %d \n", number2);

printf("number3: %d \n", number3);

printf("number4: %d \n", number4);

printf("number5: %d ", number5);

Return 0;

}
5

int number1=10, number2=20, number3=30, number4=40,

number5=50;

Arrays

• To handle such situation, C language provides a concept
called the ARRAY.

int a[5]={10,20,30,40,50};

6

10 20 30 40 50

Arrays

• a[0] holds the first element in the array

• a[1] holds second element in the array

• a[2] holds third element in the array

• a[3] holds fourth element in the array

• a[4] holds fifth element in the array

7

10 20 30 40 50

Arrays

• The elements are stored sequentially one after the other in memory.

• Any element can be accessed by using

1. name of the array

2. position of element in the array (index)

• DEFINITION OF ARRAYS

The array is a fixed-size sequenced collection of elements of same data type.

The array is a collection of homogeneous elements of same data type.

Array groups the data items of similar types sharing the common name.
8

Types of Arrays

• Single dimensional array or One dimensional array

• Two dimensional array

9

Single Dimensional Array :-

• An Array which has only one subscript is known as Single dimensional array or

One dimensional array.

• The individual array elements are processed by using a common array name

with different index values that start with Zero and ends with array_size-1.

Syntax:

data_type array_name[array_size];

10

• Single Dimensional Array :-

Syntax:

data_type array_name[array_size];

Where,

data_type: can be int, float or char

array_name: is name of the array

array_size : an integer constant indicating the maximum number of data

elements to be stored.

11

• Single Dimensional Array :-

• Rules for declaring Single Dimensional Array :-

1. An array variable must be declared before being used in a program

2. The declaration must have a data type(int, float, char), variable name and

subscript.

3. The subscript represents the size of the array. If the size is declared as 10,

programmers can store 10 elements.

4. An array index always starts from 0.

5. Example: if an array variable is declared as a[10], then it ranges from 0 to 9.

6. Each array element stored in a separate location.
12

• Single Dimensional Array :-

Memory occupied by 1D array

Total memory=array size * size of datatype

For example : int a[5];

Total memory =5*sizeof (int)

= 5*4

=20 bytes.

13

• Single Dimensional Array :-

Example: Integer array example:

int age[5];

int age[5]={0, 1, 2, 3, 4};

age[0]; /*0 is accessed*/

age[1]; /*1 is accessed*/

age[2]; /*2 is accessed*/

14

Example: Character array example:

char str[10];

char str[10]={‘H’,‘a’,‘i’}; (or)

char str[0] = ‘H’;

char str[1] = ‘a’;

char str[2] = ‘i;

str[0]; /*H is accessed*/

str[1]; /*a is accessed*/

str[2]; /*i is accessed*/

• Single Dimensional Array :-

#include<stdio.h>

int main()

{

int i;

int arr[5] = {10,20,30,40,50};

for(i=0;i<5;i++)

{

// Accessing each variable

printf("value of arr[%d] is %d \n", i, arr[i]);

}

return 0;

}
15

Storing Values in Arrays
The values can be stored in array using following methods:

• Static initialization

• Initialization of array elements one by one.

• Partial initialization of array

• Array initialization without specifying the size

• Run Time array Initialization

16

Storing Values in Arrays

• Static initialization:- We can initialize the array in the same way as the

ordinary values when they are declared.

• The general syntax of initialization of array is

data_type array_name[array_size]= {List of values};

• Example:

• int b[4]={10,12,14,16};

• Here each value will be stored in respective index values of the array.

17

Storing Values in Arrays

• Static initialization:-

• In location b[0] the value 10 is stored and in location b[1] the value 12 is

stored and in location b[2] the value 14 is stored, in location b[3] the value 16

is stored.
18

Storing Values in Arrays

• Static initialization:-

• Suppose if we try to insert more values then the size of the array it will give

us an error “Excess elements in array initializer”

• Example: int b[4]={10,12,14,16,18};

• The size of the array b is 4 but we are trying to store 5 values hence we will

be getting the error in this case.

19

Storing Values in Arrays

2. Initialization of array elements one by one:- Here the user has the liberty to

select the locations and store values and the array. This type of initialization is not

used much practically.

• Example :int b[4];

b[0]= 10;

b[2]=14;

Only the array locations specified by the user will contain the values which the user

wants the other locations of array will either be 0 or some garbage value.

20

Storing Values in Arrays

3. Partial initialization of array :- If the number of values initialized in the array is less

than the size of the array then it is called partial initialization. The remaining locations

in the array will be initialized to zero or NULL(‘\0’) value automatically.

Here the remaining locations in the array will be initialized to zero.
21

Storing Values in Arrays

4. Array initialization without specifying the size :- Here the size or the array is

not specified by the user, the compiler will decide the size based on the

number of values declared in the array.

• Example: int b[]={6,12,18};

• Here the size of the array is specified and the compiler will set the array size
as 3 for this example

22

Storing Values in Arrays

• Run Time array Initialization:- If the values are not known by the

programmer in advance then the user makes use of run time initialization.

• It helps the programmer to read unknown values from the end users of the

program from keyboard by using input function scanf().

• Here looping construct is used to read the input values from the keyboard

and store them sequentially in the array.

23

Storing Values in Arrays
• C program to demonstrate run time initialization

#include<stdio.h>

void main()

{

int b[5],i;

printf(“Enter 5 elements\n”);

for(i=0;i<5;i++)

{

scanf(“%d”,&b[i]);

}

}
24

Accessing array elements:

• We can access the elements of array using index or subscript of element.

An index gives the portion of element in the array .

• To access an array element make use of array_name[index];

• Array index starts with 0 and goes till size of array minus 1.

• To access value 16 we write b[2]=16.

• To print the value 18 :

printf(“%d”,b[3]);

25

Write a C program to read and print n integer elements in an array
#include<stdio.h>

int main()

{

int arr[5];

int i;

printf("\n Enter the array elemnts:\n ");

for(i = 0; i<5; i++)

{

scanf("%d", &arr[i]);

}

printf("\n The array elements are : ");

for(i = 0; i<5; i++)

{

printf(" %d ", arr[i]);

}

return 0;

} 26

27

28

29

4. Write C program to find largest and smallest number in an array of n elements along

with its position.

Output

30

31

5. Write C program to read n integer elements in an array and print the same in
reverse order

32

6. Write a C Program to find the sum of odd, even, all of n numbers using arrays .

33

7. Write C program to generate Fibonacci series using arrays

34

8. Write C program to find sum of n Natural numbers

Sorting Techniques:-

• The Process of arranging the elements in ascending or descending order is called

sorting

1) Bubble sort:

The sorting algorithm is a comparison based algorithm in which each pair of

adjacent elements is compared and the elements are swapped if they are not in

order.

This algorithm works by repeatedly swapping the adjacent elements if they are in

wrong order.

Bubble sort with n element required n - 1 passes(uses outer for loop)
35

Sorting Techniques:-

1) Bubble sort:

36

#include <stdio.h>

void bubble_sort(int a[], int n) {

int i , j ,temp;

for (i = 0; i < n-1; i++) { // loop n times - 1

per element

for (j = 0; j < n - i - 1; j++) { // last i

elements are sorted already

if (a[j] > a[j + 1]) { // swop if order is

broken

temp = a[j];

a[j] = a[j + 1];

a[j + 1] = temp;

}

}

}

}

Sorting Techniques:-

37

1.Bubble sort

Bubble Sort

38

Bubble Sort

39

Sorting Techniques:-
2) Selection sort:

This is an in-place comparison based algorithm It is comparison based

algorithm in which list is divided into 2 parts.

The sorted part at left and unsorted part at right end. Initially sorted

part is empty and unsorted part is entire list.

The smallest element is taken from the unsorted array and swapped with

the leftmost element and the element becomes the part of sorted array.

40

Selection Sort

41

Searching Techniques:

42

The process of finding a particular element in the large amount of data is called searching.

Linear search:- A Linear search is also called as sequential Search. In this technique we

search for a given specific element called as key element in the large list of data in sequential

order. If the key element is present in the list of data then the search is successful otherwise

search is unsuccessful.

Benefits:

• Simple approach

• Works well for small arrays

• Used to search when the elements are not sorted

Disadvantages:

• Less efficient if the array is large

• If the elements are already sorted,

linear search is not efficient.

Linear Search

43

Searching Techniques:

44

Binary Search: It is fast search algorithm which works on the principle of divide and conquer.

for this algorithm to work properly the data collection should be in the sorted form

1. Divides the array into three sections:

– middle element

– elements on one side of the middle element

– elements on the other side of the middle element

2. If the middle element is the correct value, done. Otherwise, go to step 1. using only the half of

the array that may contain the correct value.

3. Continue steps 1. and 2. until either the value is found or there are no more elements to

examine

Binary Searching

45

Binary Searching

46

Two Dimensional Array

47

• The simplest form of multidimensional array is two dimensional array.

Arrays with two or more dimensions are called multi-dimensional arrays. (in

terms of rows and columns) of same data type or An array which has two

subscripts are known as two dimensional arrays.

• The first subscript represents rows and the second subscript represent

column.

Syntax:

data_type array_name[size1][size2];

Two Dimensional Array

48

where,

data_type: is the type of data to be stored and processed in the computer’s

memory array_name: is a valid identifier representing name of the array

[size1]: indicates number of rows in the array

[size2]: indicates the number of columns in the array.

Example:

int a[2][3];

Two Dimensional Array

50

Two Dimensional Array

51

Initialization of two dimensional array :

1)Initializing all elements row wise:- A multidimensional array can be

initialized by specifying bracketed values for each row.

Example:

Two Dimensional Array

52

Initialization of two dimensional array :

Example:

Row 1 Row 2

Two Dimensional Array

53

Accessing the 2 dimensional array:-

Two Dimensional Array

54

Reading and printing 2 dimensional array:-

Two Dimensional Array

55

Reading and printing 2 dimensional array:-

where m-rowsize, n-columnsize, i-row index and j-column index

Reading

for(i=0;i<m;i++)

{

for(j=0;j<n;j++)

{

scanf("%d", &a[i][j]);

}

Printing

for(i=0;i<m;i++)

{

for(j=0;j<n;j++)

{

printf("%d", a[i][j]);

}

Write a c program to read and print the matrix of m rows and n columns

57

Write a c program to add two matrices

58

Write a c program to add two matrices

59

3. Write a C Program to find Transpose of matrix

60

3. Write a C Program to find Transpose of matrix

61

Write a C program to read 2 matrices of size m*n and p*q.
Compute the matrix multiplication by considering the rules for
the same and print appropriate result.

62

63

64

65

Output

66

Strings

67

Strings

 String constant or a string literal can be defined as a sequence of characters

enclosed in double quotes that will be treated as a single data element

followed by a null character ‘\0’ (Null character indicates the end of string).

• Syntax: char string_name[size];

Where,

char is the data type of strings

string_name is a valid identifier which is the name for the string variable size

indicates the length of the string which is to be stored.
68

Strings

• Syntax: char string_name[size];

• There is no other data type for String variable.

• Strings are treated as arrays of type char

• So, the variable which is used store an array of characters is called

String variable.

69

Initialization of strings

• char str1[10]= “Ajay”; or

• char str1[10]={‘A’,‘j’,‘a’,‘y’};

• Both the initializations mentioned are same

• if we directly specify the entire string at a time we use “ ”

• if we specify the characters separately we should use ‘ ’, for each

character and finally enclosing all the characters within { }

70

Initialization of strings
• char str1[10]= “string”; or

• char str1[10]={‘s’,‘t’,‘r’,‘i’,‘n’,g’};

• Both the initializations mentioned are same

• if we directly specify the entire string at a time we use “ ”

• if we specify the characters separately we should use ‘ ’, for

each character and finally enclosing all the characters within { }

71

Reading a string value using Formatted input and output

scanf() and printf()

72

Array of Strings/Multi dimensional Strings

73

The two dimensional array of strings is an array of one dimensional

character array which consist of strings as its individual elements.

Syntax:

char string_name[size1][size2];

where, char is a datatype of strings

string_name is a valid identifier which is the name of the string

variable

size1 indicates the number of strings in the array

size 2 indicates the maximum length of each string.

Static Initialization of strings:-

74

char str1[3][10]={“Thomas”,“Bob ”,“Alice”};

Dynamic Initialization of strings:-

75

#include<stdio.h>

void main()

{

char str[50][50];

int n,i;

printf(“Enter the number of names\n”);

scanf(“%d”,&n);

printf(“Enter %d names\n”,n);

for(i=0;i<n;i++)

{ scanf(“%s”,str[i]);

}

printf(“Entered names are \n”);

for(i=0;i<n;i++)

{ printf(“%s\n”,str[i]);

}

}

String Manipulating Functions:-

76

C supports different string handling functions to perform different

operations on the strings. All the string handling functions are stored in the

header file “#include<string.h>”.

String Manipulating Functions:-

77

String Length :- The function strlen() is used to find the length of the string

in terms of number of characters in it. Syntax: strlen(string_data);

C program to find length of the string with out using strlen function

78

#include<stdio.h>

#include<string.h>

void main()

{

char str1[50];

int i,len;

printf("Enter a string\n");

scanf("%s",str1);

len=0;

for(i=0;str1[i]!='\0';i++)

{

len=len+1;

}

printf("Length of the String=%d\n",len);

}

String Manipulating Functions:-

79

String Compare:- The function strcmp() is used to compare the string data

every character of one string is compared with the corresponding position

character of second string

Syntax: strcmp(str1,str2)

The function returns 0 if there is complete match (str1==str2)

• Returns positive value if str1>str2

• Returns negative value if str1<str2

C program to compare two strings using strcmp() function

80

#include<stdio.h>
#include<string.h>
void main()
{
char str1[20],str2[20];
int k;
printf("Enter string 1\n");
scanf("%s",str1);
printf("Enter string 2\n");
scanf("%s",str2);
k=strcmp(str1,str2);
if(k==0)
printf("Strings are same\n");
else

printf("Strings are different\n");
}

C program to compare two strings without using strcmp()
function

81

C program to compare two strings without using strcmp()
function

82

String Manipulating Functions:-

83

String Copy:- The function strcpy() copies the content from one string to

another string Syntax: strcpy(str2,str1);

#include<stdio.h>
#include<string.h>
void main()
{
char str1[30],str2[30];
printf("Enter string1\n");
scanf("%s",str1);
strcpy(str2,str1);

printf("The copied string is = %s\n",str2);
}

program to copy the string without using strcpy() function

84

String Manipulating Functions:-

85

String Concatenate :- The function strcat() is used to concatenate (attach)

two strings.

string str2 is attached to the end of string str1

Syntax: strcat(str1,str2);

C program to concatenate two strings using strcat function

86

C program to concatenate two strings without using strcat function

87

String Manipulating Functions:-

88

String n Concatenate: - The function strncat() is used to concatenate the specified

number of characters only.

Where n is an integer value which concatenates only n characters of string2 to

string1

Syntax: strncat(str1,str2,n);

C program to concatenate two strings using strncat function

89

String Manipulating Functions:-

90

String Reverse:- The function strrev() is used to reverse the string .

The characters from left to right in the original string are placed in the reverse

order

Syntax: strrev(str1)

C program to reverse a string using strrev() function

91

C program to reverse a string without using strrev() function

92

C program to check if the given string is a Palindrome or not a Palindrome

93

String Manipulating Functions:-

94

String Lower :- The function strlwr() converts each character of the

string to lowercase.

SYNTAX : strlwr(string_data);

String Upper :- The function strupr() converts each character of the

string to uppercase.

SYNTAX : strupr(string_data);

C program to convert strings to uppercase and lowercase using strupr()
and strlwr () functions

95

96

•C program to perform string manipulation
functions using switch statement.

97

Output

98

Other Applications of strings. :-

99

• The String functions are also used to count the number of vowels and

consonants in the given string. And also gives the frequency of occurrence

of each vowel in the given string.

This program makes use of the header file “#include<ctype.h>”which is

useful for testing and mapping characters.

• The function “isalpha()” is used to check if the parsed character is an

alphabet or not.

