
MODULE-4 

FUNCTIONS and POINTERS



Contents

2

Pointers: Definition, Initialization

Pointers arithmetic

Pointers & Arrays and Dynamic memory allocation.

Functions: Prototype declaration

Function definition

Function call

Types of functions

Difference between built-in and user-defined functions.



POINTERS 

3



Introduction to pointers

• The pointers in C language refer to the variables that hold

the addresses of different variables of similar data types.

• We use pointers to access the memory of the said variable

and then manipulate their addresses in a program.

• Every variable is a memory location and every memory

location has its address defined which can be accessed using

ampersand (&) operator, which denotes an address in

memory.
4



Introduction to pointers

5

#include <stdio.h>

Void main ()

{

int var1;

char var2[10];

printf("Address of var1 variable: %x\n", &var1 );

printf("Address of var2 variable: %x\n", &var2 );

}



Pointer Declaration

6

Declaration of a pointer is done before using it to store

any variable address. The general form of a pointer

variable declaration is − type *var-name;

type is the pointer's base type; it must be a valid C data

type and var-name is the name of the pointer variable.

The asterisk * used to declare a pointer is the same

asterisk used for multiplication. However, in this

statement the asterisk is being used to designate a

variable as a pointer.



Pointer Declaration

7

type *var-name;



Pointer Declaration

8

• Declaration and Initialization of pointers :- The 

operators used to  represent pointers are

– Address Operator (&)

– Indirection Operator (*)

• Syntax :-

ptr_data_type  *ptr_var_name;

ptr_var_name = &var_name;

– where var_name is a variable whose address is to be 

stored in the pointer.



Pointer Declaration

9

• Example :-

int a=10;

int *ptr;

then

ptr = &a;

*ptr = a;

ptr is a pointer holding the address of variable ‘a’

*ptr holds the value of the variable a.



Pointer Declaration

10

#include <stdio.h>

void main ()

{

int var = 20; /* actual variable declaration */

int *ip;           /* pointer variable declaration */

ip = &var; /* store address of var in pointer variable*/

printf("Address of var variable: %x\n", &var );

/* address stored in pointer variable */

printf("Address stored in ip variable: %x\n", ip );

/* access the value using the pointer */

}



Pointer Declaration

11



Pointer Types

12

There are eight different types of pointers which are as

follows −

•Null pointer

•Void pointer

•Wild pointer

•Dangling pointer

•Complex pointer

•Near pointer

•Far pointer

•Huge pointer



NULL Pointers

13

A pointer that is assigned NULL is called a null pointer.

The NULL pointer is a constant with a value of zero defined in

several standard libraries.



Generic Pointers(Void pointer )

14

• When a variable is declared as being a pointer to 

type void, it is known as a generic pointer.

• Void pointer is a specific pointer type – void * – a

pointer that points to some data location in storage,

which doesn’t have any specific type.

• If we assign address of char data type to void pointer

it will become char



Generic Pointers(Void pointer )

15

• Instead of declaring different types of pointer variable it

is feasible to declare single pointer variable which can

act as an integer pointer, character pointer.

Declaration : void * pointer_name;



Generic Pointers(Void pointer )

16

#include<stdio.h>

void main() {

int x = 4; float y = 5.5; //A void pointer

void *ptr;

ptr = &x;

printf("Integer variable is = %d", *( (int*) ptr) ); //type 

casting

ptr = &y;

printf("\nFloat variable is= %f", *( (float*) ptr) );

}



Passing Arguments to function using 

pointer

17

When we pass a pointer as an argument instead of a

variable then the address of the variable is passed

instead of the value. So any change made by the function

using the pointer is permanently made at the address of

passed variable.



Passing Arguments to function using pointer

18

#include <stdio.h>
void swap(int *n1, int *n2);
void main()
{

int num1 = 5, num2 = 10;             // address of num1 and 
num2 is passed

swap( &num1, &num2);
printf("num1 = %d\n", num1);
printf("num2 = %d", num2);

}
void swap(int* n1, int* n2)
{

int temp;
temp = *n1;
*n1 = *n2;
*n2 = temp;

}



Pointer Expressions and Arithmetic Pointer

19

Pointer Expressions

Expressions involving pointers conform to the same rules as other

expressions. Expressions in C programing language combine

operands, operators, and variables. The operator denotes the action

or operation to be performed.

Arithmetic Pointer

A pointer in c is an address, which is a numeric value. Therefore, you

can perform arithmetic operations on a pointer.

It is a method of calculating the address of an object with the help

of arithmetic operations on pointers and use of pointers in

comparison operations.



Pointer Arithmetic in C

• We can perform arithmetic operations on the pointers like 

addition, subtraction, etc. 

• However, as we know that pointer contains the address, the result 

of an arithmetic operation performed on the pointer will also be a 

pointer if the other operand is of type integer.

• In pointer-from-pointer subtraction, the result will be an integer 

value. 

• Following arithmetic operations are possible on the pointer in C 

language:

Increment , Decrement , Addition ,  Subtraction  Comparison





1. Increment/Decrement of a Pointer

Increment: It is a condition that also comes under addition. When a 

pointer is incremented, it actually increments by the number equal to 

the size of the data type for which it is a pointer.

For Example:

If an integer pointer that stores address 1000 is incremented, then it 

will increment by 4(size of an int), and the new address will point 

to 1004. While if a float type pointer is incremented then it will 

increment by 4(size of a float) and the new address will be 1004



Decrement a Pointer: It is a condition that also comes under

subtraction. When a pointer is decremented, it actually decrements by

the number equal to the size of the data type for which it is a pointer.

ForExample:

If an integer pointer that stores address 1000 is decremented, then it

will decrement by 4(size of an int), and the new address will point

to 996. While if a float type pointer is decremented then it will

decrement by 4(size of a float) and the new address will be 996.



Pointer Expressions and Arithmetic Pointer

24



25

#include <stdio.h>

void main()

{

int x = 6; 

int N = 4;

int *ptr1, *ptr2;

ptr1 = &N; // stores address of N

ptr2 = &x; // stores address of x

printf(" ptr1 = %u, ptr2 = %u\n", ptr1, ptr2);

x = ptr1 - ptr2;

printf("Subtraction= %d\n", x);

}

Pointer Expressions and Arithmetic Pointer



Pointer Expressions and Arithmetic Pointer

26

#include <stdio.h>

void main()

{

int first, second, *p, *q, sum;

printf("Enter two integers to add\n");

scanf("%d%d", &first, &second);

p = &first;

q = &second;

sum = *p + *q;

printf("Sum of the numbers=%d\n",sum);

}



Pointers and Arrays

27

Array name  a pointer to the initial (0th) array element

An array is represented by a variable that is associated with the address of its first

storage location. A pointer is also the address of a storage location with a defined

type, so it is allowed to use of the array [ ] index notation with both pointer

variables and array variables.



Pointers and Arrays

28

#include <stdio.h>

#define N 5

int main()

{

int i, * ptr, sum = 0;

int nums[N] = {1, 2, 3, 4, 5};

for (ptr = nums; ptr < & nums[N]; ++ptr)

sum += * ptr;

printf("Sum = %d ", sum);

}



Pointers and Arrays

29

/* c program to demonstrate arrays with pointers */

#include<stdio.h>

void main()

{    int a[10]={11,13,15,17};

int *ptr;

int i;

ptr=a;

for(i=0;i<4;i++)

{

printf("%d\t",a[i]);

printf("%d\n",&a[i]);

printf("%d\t",*ptr);

printf("%d\n",ptr);

ptr++;

}

}





Double Pointer: When a pointer holds the address 

of another pointer then such type of pointer is 

known as pointer-to-pointer or double pointer.

• Here the first pointer is used to store the 

address of the variable

• The second pointer is used to store the address 

of the first pointer. 

Declaration of double pointer :

Syntax: datatype **ptr;





#include<stdio.h>

void main()

{

int var=777;

int *ptr2;

int ** ptr1;

ptr2=&var;

ptr1=&ptr2;

printf(“value of var=%d\n”,var);

printf(“value of var using  single pointer=%d\n”,*ptr2);

printf(“value of var using  double pointer=%d\n”,**ptr1);

}



Develop a program using pointers to compute the sum, 

mean and standard deviation of all elements stored in an 

array of n real numbers.

Step 1: Find the mean.

Step 2: For each data point, find 

the square of its distance to the 

mean.

Step 3: Sum the values from Step 

2.

Step 4: Divide by the number of 

data points.



Develop a program using pointers to compute the sum, mean and standard 

deviation of all elements stored in an array of n real numbers.



Develop a program using pointers to compute the sum, mean and standard 

deviation of all elements stored in an array of n real numbers.





























Functions

• A function is a collection of statements that perform

a specific task

• These functions are very useful to read write and

debug complex programs ;

Types of Functions

• These can be broadly classified into two types

– Built-in functions

– User defined functions



Why are functions needed

1.Improve Modularity

• We can divide a large program into multiple small modules.

• If we write programs using modules, it very easy to understand the program.

• And it's also easy to debug (say, which part doesn't work properly) the program.

2.Code Reusability

• Call a function multiple times, thereby allowing reusability and modularity in C

programming.

• It means that instead of writing the same code again and again for different

arguments, you can simply enclose the code and make it a function and then call it

multiple times by merely passing the various arguments



Why are functions needed

3.Reduce workload:

A big program can be broken into smaller function, then divide the

workload by writing different functions.

4.Speed:

Functions CAN make code faster by coding logic once instead of

repeating several times



• User defined functions :-

The user defined function is defined by the user

according to its requirements.

• instead of relying only on the built-in functions C

allows us to create our own function called user

defined function

• Parts of user defined function.

– Function Declaration or Function prototype

– Function call or calling Function

– Function Definition or defining a function



• Function Declaration or Function prototype :-

• It will inform the compiler about the return type,

function name and number of arguments along

with the data types.

• syntax:

return_type function_name(argument _list);



Function Declaration or Function prototype :-

return_type function_name(argument _list);

– return_type :- is the data type of the value that is

returned or sent from the function.

– Function_name :-function should be given a

descriptive name.

– argument _list :- contains type and names of the

variables that must be passed to the function.



Function Declaration or Function prototype :-

• Example:-

int large (int x, int y);

• is a function declaration with function_name “large” with return

_type “integer” and has two arguments “x” and “y” of integer

type.

• NOTE:-

– if we define a function before main ( ) function the there is no

need of function declaration

– if we define the function after main ( ) function then it is

mandatory to declare the function because it will inform the

compiler.



Function call or calling function :-

• Invoking the function with valid number of

arguments and valid data type is called as

function call.

• To call a function one simply needs to pass the

required parameters along with the function

name and if the function returns the value then

one can store the returned value.



• Syntax:

function_name(argumement_list);

• argumement_list :- consist of constant(s) ,

variable(s), or Expression(s).



Calling function and called function :-

• The function main( ) that calls another function is

called calling function

• The function being called by the calling function

is known as called function.

Calling function

Called  function



• Example:-

large (m,n);

• The function can be invoked in various ways

– large(m,n); //m and n are variables.

– large(5,8); //5 and 8 are constants

– large(5+2,6); // The first argument is an expression 

which is evaluated to  7

– large(2*3,5+3); //is an expression which  is equivalent 

to large(6,8);  



Function definition or Defining a function

• The declared function must define the same to perform

the specific task.

• Syntax

return_type function_name(argument _list)

{

local_variable_declaration;

Body of the function;

}

• return_type :- when the function is called the function

may or may not return a value



– If the function returns a value then the return_type

will be any appropriate data type (int, float, char etc)

and we use the keyword “return” to return the value.

– If the function does not return a value then the

return_type will be “void” and no need to use the

keyword “return”



• function_name :- is the name of the function.

• argument _list :- these are also called as

parameters. the argument_list refers to the type

order and number of parameters of the function.

• local_variable_declaration :-these are

temporary variables which are required only

within this function.



• Function body:- The body of the function

contains the collection of statements that define

what the function does.

• when the program makes the function call the

program control is transferred to the called

function. This called function performs the

defined task and returns the program control

back to the main( ) function.

/* C program to find area of circle using

functions */



#include<stdio.h>

float area(float r); // function declaration

void main()

{

float r,x;

printf("Enter the radius\n");

scanf("%f",&r);

x=area(r); // function call

printf("Area ofcircle= %f\n",x);

}

float area(float r) // function defination

{

float x;

x=3.142*r*r;

return x;

}



return Statement 
• A return statement ends the execution of a function, and returns 

control to the calling function.

• Syntax.      return <expression>; 

Example:  return 10;  return a; return a+b;

• The value will be passed back to the function where it was called.

• Return statement may or may not return the value to the calling 

function.

• For functions that have no return statement, after execution of last 

statement of called function control returns to the calling function.

• Function that has void as its return statement cannot return any value to 

the calling function,



Parameter passing mechanism 

There are two methods by which parameters or arguments

can be passed to the function

– Call by value

– Call by reference



Call by value or Argument passing by value

• When an variable or value is passed to an function

during its call such function invocation(call) is called

as call by value.

Call by reference or Argument passing by reference

when the address of the variable is passed to the

function during its invocation(call) such a function is

called as call by reference.



• Here only the values are passed to the values of variables

Call by value

Call by value



C program to  demonstrate call by value  

#include<stdio.h>

int sum(int n);

void main()

{

int n,x;

printf("Enter the value of n\n");

scanf("%d",&n);

x=sum(n);

printf("Sum of natural numbers=%d\n",x);

}

int sum(int n)

{

int res=0,i;

for(i=1;i<=n;i++)

res=res+i;

return res;

}



Here the values are not passed to called function, the addresses 
of values are passed to the called function

Call by reference

*  Is a pointer used to 
store address of the 
value stored

&  Is  used to find the 
location of the value 
stored



C program to  swap two numbers using call by reference  or 

Argument passing by reference 

#include<stdio.h>

void swap(int *a,int *b);

void main()

{

int a,b;

printf("Enter two numbers\n");

scanf("%d%d",&a,&b);

printf("Before Swapping\n a=%d\t b=%d\n",a,b);

swap(&a, &b);

printf("After Swapping\n a=%d\t b=%d\n",a,b);

}

void swap(int *a, int *b)

{

int temp;

temp=*a;

*a=*b;

*b=temp;

}



Advantages and Disadvantage of Call by value and Reference



Types of function based on arguments and return 

values or Types of user defined function 

– Function with argument/parameter with return 

value.

– Function with argument/parameter without return 

value.

– Function without argument/parameter with return 

value.

– Function without argument/parameter without 

return value.



Function with argument with return value

The arguments are passed from calling function to 

the called function. 

• based on the received argument values the called

function performs the required action and returns

the value back to calling function (main( )

function).

/* C program to demonstrate Function with

argument with return value */



#include<stdio.h>

int add(int a, int b);

void main()

{

int a,b,sum;

printf("Enter two numbers\n");

scanf("%d%d",&a,&b);

sum=add(a,b);

printf("The Sum of two numbers=%d\n",sum);

}

int add(int a, int b)

{

int sum;

sum=a+b;

return sum;

}



Function with argument without return value

• The arguments are passed from calling function 

to the called function. 

• based on the received argument values the 

called function performs the required action but 

does not return any value back to calling 

function (main( ) function). 

/* C program to demonstrate Function with 

argument without  return value  */



#include<stdio.h>

void add(int a, int b);

void main()

{

int a,b;

printf("Enter two numbers\n");

scanf("%d%d",&a,&b);

add(a,b);

}

void add(int a, int b)

{

int sum;

sum=a+b;

printf("The Sum of two numbers=%d\n",sum);

}



Function without argument with return value

• Here no arguments are passed from calling 

function to the called function. 

• The called function performs the required action 

by taking the necessary arguments and returns the 

value back to calling function (main( ) function).

/* C program to demonstrate Function without 

argument with return value */



#include<stdio.h>

int add();

void main()

{

int sum;

sum=add();

printf("The Sum of two numbers=%d\n",sum);

}

int add()

{

int a,b,sum;

printf("Enter two numbers\n");

scanf("%d%d",&a,&b);

sum=a+b;

return sum;

}



Function without argument without return value

• Here no arguments are passed from calling 

function to the called function. 

• The called function performs the required action 

by taking the necessary arguments but does not 

return any value back to calling function (main( ) 

function). 

/* C program to demonstrate Function without 

argument without return value */



#include<stdio.h>

void add();

void main()

{

add();

}

void add()

{

int a,b,sum;

printf("Enter two numbers\n");

scanf("%d%d",&a,&b);

sum=a+b;

printf("The Sum of two numbers=%d\n",sum);

}



Scope of variables

The scope of a variable is the block of code in the entire program where

the variable is declared, used, and can be modified.

1. Block Scope: A Block in C is a set of statements written within the

right and left braces.

A block may contain more blocks within it, i.e., nested blocks.

The right and left braces are as follows:

{ }



Scope of variables

2. Program scope

Global variables declared outside the function bodies have

a program scope. The availability of global variables stays for the

entire program after its declaration



Scope of variables

3. File scope

.

• These variables are usually declared

outside of all of the functions and

blocks, at the top of the program

and can be accessed from any

portion of the program.

• The global static variable is

accessible by all the functions in the

same source file as the variable.

This variable has a File Scope.



Actual arguments and Formal arguments :-

• When the function is called, the values that are passed in

the call are called as actual parameters.

• The formal parameters are written in the function

prototype and function header of the definition .

• These are called as dummy parameters which are assigned

the values from the arguments when the function is called.



Actual arguments and Formal arguments :-



C program to demonstrate actual arguments and formal 

arguments 
#include<stdio.h>

int perimeter(int x,int y);

void main()

{

int l,b,p;

printf("Enter length and breadth\n");

scanf("%d%d",&l,&b);

p=perimeter(l,b);   // function call with actual parameters

printf("Perimeter of Rectangle=%d\n",p);

}

int perimeter(int x,int y) // int x, int y are formal parameters

{

int per;     //int per is a local variable

per=2*(x+y);

return per;

}



• Passing Arrays to functions :- Array elements or

an entire array can be passed to a function such a

mechanism is called a s passing array to the

function.



program to demonstrate passing array to the functions


