MODULE-4

FUNCTIONS and POINTERS

Contents

Pointers: Definition, Initialization
Pointers arithmetic
Pointers & Arrays and Dynamic memory allocation.

—unctions: Prototype declaration

—unction definition

—unction call

Types of functions

Difference between built-in and user-defined functions.

POINTERS

Introduction to pointers

 The pointers in C language refer to the variables that hold

the addresses of different variables of similar data types.

 We use pointers to access the memory of the said variable

and then manipulate their addresses in a program.

 Every variable is a memory location and every memory
location has its address defined which can be accessed using
ampersand (&) operator, which denotes an address in

memory.

Introduction to pointers

#include <stdio.h>
Void main ()

{

Int varl,

char var2[10];

printf("Address of varl variable: %x\n", &varl),
printf("Address of var2 variable: %x\n", &var2),

}

Address of varl variable; br5addd
Address of var2 variable: bf5adfh

Pointer Declaration

Declaration of a pointer is done before using it to store
any variable address. The general form of a pointer

variable declaration Is — type *var-name;

type Is the pointer's base type; it must be a valid C data
type and var-name is the name of the pointer variable.

The asterisk * used to declare a pointer Is the same
asterisk used for multiplication. However, In this
statement the asterisk Is being used to desighate a

variable as a pointer.

Pointer Declaration

type *var-name;

int *ip;

double *dp;
float *fp;
char *c

fﬂ:
fﬂ:
fﬂ:
fﬂ:

nointer to an integer */

hointer to a double */

nointer to a float */

ointer to a character */

Pointer Declaration

 Declaration and Initialization of pointers :- The
operators used to represent pointers are

— Address Operator (&)
— Indirection Operator (*)

e Syntax :-

ptr_data type *ptr_var _name;
ptr_var_name = &var_name;

— where var_name is a variable whose address is to be

stored In the pointer.

Pointer Declaration

* Example :-
Int a=10;
Int *ptr;
then
ptr = &a;
*ptr = a;

ptr 1s a pointer holding the address of variable ‘a’
*ptr holds the value of the variable a.

Pointer Declaration

#include <stdio.h>

void main ()

{

Int var = 20: /* actual variable declaration */
Int *Ip; /[* pointer variable declaration */

Ip = &var; /* store address of var in pointer variable*/
printf(""Address of var variable: %x\n", &var);

[* address stored in pointer variable */
printf(" Address stored in ip variable: %x\n", ip);

/* access the value using the pointer */

¥
Address of var variable: bffd8b3c

Address stored 1n 1p variable: bffd8b3c

Value of *1p variable: 20

10

Pointer Declaration
Index 0 1 2 3 4 5

Variable H ¢ | | 0 \0

o 2 £ 3 e e

11

Pointer Types

There are eight different types of pointers which are as
follows —

*Null pointer

*\oid pointer

*Wild pointer

*Dangling pointer

«Complex pointer

*Near pointer

*Far pointer

*Huge pointer

NULL Pointers

A pointer that is assigned NULL is called a null pointer.

The NULL pointer is a constant with a value of zero defined in

several standard libraries.

#tinclude <stdio.h> ThE Ualue Uf ptF i5 @

int main () {
int Fptr = NULL;
printf("The value of ptr is : %x\n", ptr);

return ©;

Generic Pointers(\Void pointer)

* When a variable is declared as being a pointer to

type void, it Is known as a generic pointer.

* Void pointer Is a specific pointer type — void * — a
pointer that points to some data location In storage,
which doesn’t have any specific type.

* If we assign address of char data type to void pointer

It will become char

14

Generic Pointers(\Void pointer)

* Instead of declaring different types of pointer variable it
Is feasible to declare single pointer variable which can

act as an integer pointer, character pointer.

Declaration : void * pointer_name,;

Generic Pointers(\oid pointer)
#include<stdio.h>

void main() {

int x = 4: float y = 5.5; //A void pointer
void *ptr;

ptr = &x;

printf("Integer variable is = %d”, *((int¥) ptr)); //type
Integer variable 1s = 4

Float variable 1is= 5.50000@
ptr = &y;

printf("¥nFloat variable is= %f", *((float*) ptr));
| .

Passing Arguments to function using
pointer

When we pass a pointer as an argument instead of a
variable then the address of the variable Is passed
Instead of the value. So any change made by the function

using the pointer is permanently made at the address of

passed variable.

Passing Arguments to function using pointer

#include <stdio.h>
void swap(int *n1l, int *n2);
void main()
{
int n uml1 =5, num2 = 10; // address of num1 and
num2 is passed
swap(&num1l, &numa2);
printf("num1l = %d\n", num1l);
printf("num2 = %d", num?2);
}
void swap(int* nl, int* n2)
{
int temp;
temp = *nl;
*nl = *n2;
*n2 = temp;

} 18

Pointer Expressions and Arithmetic Pointer
Pointer Expressions

Expressions involving pointers conform to the same rules as other
expressions. Expressions in C programing language combine
operands, operators, and variables. The operator denotes the action

or operation to be performed.

Arithmetic Pointer

A pointer in c is an address, which is a numeric value. Therefore, you
can perform arithmetic operations on a pointer

It is a method of calculating the address of an object with the help
of arithmetic operations on pointers and use of pointers In

comparison operations.

Pointer Arithmetic in C

We can perform arithmetic operations on the pointers like
addition, subtraction, etc.

However, as we know that pointer contains the address, the result
of an arithmetic operation performed on the pointer will also be a
pointer if the other operand is of type integer.

In pointer-from-pointer subtraction, the result will be an integer
value.

Following arithmetic operations are possible on the pointer in C
language:

Increment , Decrement , Addition, Subtraction Comparison

Incrementing Pointer in C:-

[f we increment a pointer by 1, the pomter will startpointing to the
immediate next location.

This 15 somewhat different from the general anthmetic since the value of the pownter
will get increased by the sizeof the data type to which the pointer 1s pointing.

The Rule to increment the pointer 1s given below:
new_address= current_address +1* size_of(data type)

Where 115 the number by which the pointer get increased.

1. Increment/Decrement of a Pointer
Increment: It 1s a condition that also comes under addition. When a
pointer is incremented, it actually increments by the number equal to

the size of the data type for which it is a pointer.

new address= current address +1* size of(data type)

For Example:

If an integer pointer that stores address 1000 is incremented, then it
will increment by 4(size of an int), and the new address will point
to 1004. While if a float type pointer is incremented then it will

Increment by 4(size of a float) and the new address will be 1004

Decrement a Pointer: It i1s a condition that also comes under
subtraction. When a pointer Is decremented, it actually decrements by

the number equal to the size of the data type for which it is a pointer.

new address= current address -1 * size of(data type)

ForExample:
If an integer pointer that stores address 1000 is decremented, then it
will decrement by 4(size of an int), and the new address will point
to 996. While if a float type pointer i1s decremented then it will

decrement by 4(size of a float) and the new address will be 996.

Pointer Expressions and Arithmetic Pointer

#include <stdio.h>

Address of p variable is 3214864300

i[1t rrmairw{]{ After adding 3: Address of p variable is 3214864312

int number=50;

int *p;//pointer to int

p=&number;//stores the address of number variable
printf("Address of p variable i1s %u \n",p);

p=p+3; //adding 3 to pointer variable

orintf("After adding 3: Address of p variable is %u \n",p);

return O;

}

Pointer Expressions and Arithmetic Pointer
#include <stdio.h>

void main()

{ ptr1 = 2351709016, ptr2 = 2351709020
int x = 6; Subtraction= -1
Int N =4;

Int *ptrl, *ptr2;
otrl = &N; // stores address of N
otr2 = &X; // stores address of x
orintf(™ ptrl = %u, ptr2 = %u\n", ptrl, ptr2);
X = ptrl - ptr2;
printf("Subtraction= %d\n", x);
h

Pointer Expressions and Arithmetic Pointer

#include <stdio.h>
void main ()

{

int first, second, *p, *q, sum;

printf ("Enter two integers to add\n");

scanf ("%d%d", &first, &second) ;

p = &first;

q = &second;

sum = *p + *q;

printf ("Sum of the numbers=%d\n", sum) ;
}

Enter two 1ntegers to add

4

C
¥

Sum o1 .

Pointers and Arrays

Array name = a pointer to the initial (Oth) array element

An array is represented by a variable that is associated with the address of its first
storage location. A pointer is also the address of a storage location with a defined

type, so it is allowed to use of the array [] index notation with both pointer

variables and array variables.

= Ox12345678

Y

A alo] alll] al] als] alal

27

Pointers and Arrays
#include <stdio.h>

#define N 5

Sum 15

int main()
1
int i, * ptr, sum = 0;
int nums[N] = {1, 2, 3, 4, 5};
for (ptr = nums; ptr < & nums[N]; ++ptr)
sum += * ptr;
printf("Sum = %d ", sum);
} 28

Pointers and Arrays
[* ¢ program to demonstrate arrays with pointers */

#include<stdio.h>
void main()

{ int a[10]={11,13,15,17};
Int *ptr;
INtI; e a[i] prints the value of the array at index i .
ptr:a; 8a[i] prints the address of the array element.
for(i:();i<4;i++) e *ptr prints the value where ptr is currently pointing.
{ » ptr prints the address stored in ptr.

printf(*'%od\t" a[i]);
printf(**%d\n"",&ali]);
printf(""%d\t"", *ptr);
printf(*'%d\n"",ptr);
ptr++;

}

(Assume address starts at 1000 and each integer occupies 4 bytes)

I ali] &ali] *ptr
0 11 1000 11
1 13 1004 13
2 15 1008 15

3 17 1012 17

ptr

1000

1004

1008

1012

Double Pointer: When a pointer holds the address
of another pointer then such type of pointer Is
known as pointer-to-pointer or double pointer.

* Here the first pointer is used to store the
address of the variable

* The second pointer Is used to store the address
of the first pointer.

Declaration of double pointer :
Syntax: datatype **ptr;

Pointer to pointer

Pointer to

Actual Variable

with Value

var

of variable variable
ptr2 ptrl
4020 2008
#3096 > 41020

Address of pointer ptr2

Address of pointer ptrl

10

» #2008
Address of the vaniable

#include<stdio.h>
void main()

value of var=777

1 value of var using single pointer=777
Int var=777, value of var using double pointer=777
Int *ptr2;
Int ** ptrl,;
ptr2=&uvar,

ptri=&ptr2;
printf(“value of var=%d\n”,var);

printf(“value of var using single pointer=%d\n”,*ptr2);

printf(‘“‘value of var using double pointer=%d\n”,**ptrl);

Develop a program using pointers to compute the sum,
mean and standard deviation of all elements stored in an
array of n real numbers.

Step 1: Find the mean.
Step 2: For each data point, find
the square of its distance to the
mean.
Step 3: Sum the values from Step
2.
7 = Population siandard deviaion Step 4: Divide by the number of
N =the size of the population]

data points.

i = each value from the population

M = the population mean

Develop a program using pointers to compute the sum, mean and standard
deviation of all elements stored in an array of n real numbers.

#include<stdio.h>
#include<math.h> mean=sum,/n;
void main() ptr=a;

{

for(1=0;1<n;1++
float a] 50],sum=0,sumvar=0,mean,var,sd; (1=01<n;i++)

float *ptr; {

int n,i; sumvar=sumvar+(pow((*ptr-mean),2));
printf("Enter the number of elements\n"); ptr++;

scanf("%d",&n); }

printf("Enter %d array elements\n",n);
for(i=0;i<n;i++) var=sumvar/n;

{ sd=sqrt(var);

scanf("%f" &alil); printf("Sum = %f\n",sum);
printf("Mean = %f\n",mean);
printf("Standard Deviation = %f\n",sd);

}

ptr=a;

for(i=0:1<n;i++)

{
sum=sum-+*ptr; }
ptr++;

}

Develop a program using pointers to compute the sum, mean and standard
deviation of all elements stored in an array of n real numbers.

Enter the number of elements
4

Enter 4 array elements

2.1

2.2

2.3

2.4

Sum = 9.,000000

Mean = 2.250000

Standard Deviation = 0.111803

MEMORY ALLOCATION

* The blocks of information in a memory system is called memory

allocation.

* To allocate memory it is necessary to keep in information of
available memory in the system. If memory management system
finds sufficient free memory, 1t allocates only as much memory as

needed, keeping the rest available to satisfy future request.

* In memory allocation has two types. They are static and dynamic

memory allocation.

STATIC MEMORY ALLOCATION

* In static memory allocation, size of the memory may be required for

the that must be define before loading and executing the program.

DYNAMIC MEMORY ALLOCATION

* In the dynamic memory allocation, the memory 1s allocated to a
variable or program at the run time.
* The only way to access this dynamically allocated memory 1s

through pointer.

MEMORY ALLOCATION FUNCTIONS

Function Use of Function

Allocates requested size of bytes and retums a pointer first

malloc) byte of allocated space

Allocates space for an array elements, initializes to zero
f o) and then returns a pointer to memory
free() deallocate the previously allocated space

realloc) Change the size of previously allocated space

ALLOCATION A BLOCK OF MEMORY :
MALLOC

malloe() function is used for allocating block of memory at
runtime. This function reserves a block of memory of given

size and returns a pointer of type void.

Ptr=(cast-type*) malloc (byte-size);

Malloc()

int* ptr = (int*) malloc (5* sizeof (int));

y
ptr = | | —
«— 20 bytes of memory —»

#1nclude <stdio.h>
#include <stdlib.h>
vold main() {

int *ptr;

6763168 6/63168 6763168 6763168 6763168

int n = 5; // Number of integers
// Allocate memory using malloc
ptr = (int *)malloc(n * sizeof(int));
it (ptr == NULL) {
printf("Memory allocation failed\n");

return 1:

}

for (int 1 = 0;

1 <n; 1++) {

printf("%d ", ptr);

}

// Free the allocated memory

free(ptr);

ALLOCATION A BLOCK OF MEMORY :
CALLOC

calloe() i1s another memory allocation function that is used for
allocating memory at runtime. calloe function 15 normally used for

allocating memory to dernived data types such as arrays and

structures.

Ptr=(cast-type™®)calloc(n.elem-size);

Calloc()

_ i
int* ptr = int*) calloc (5, izeof (int)),

Y

ptr = | —

o 4b Y
20 bytes of memory

#1include <stdio.h=

#1nclude <stdlib.h> 33809056, 33809056, 33809056, 33809056, 33809056
vold main()

4
// This pointer will hold the
// base address of the block created
int* ptr;
int n=5, 1;
ptr = (int*)calloc(n, sizeof(int));
if (ptr == NULL) {
printf("Memory not allocated.\n");

return 1;
+
else {
for (1 =0; 1 < n; ++1) {
printf("%d, ", ptr);
}
+

ALTERING THE SIZE OF A BLOCK : REALLOC

realloc() changes memory size that is already allocated

dynamically to a variable.

ptr=REALLOC(ptr,new size);

Realloc()

int* ptr = (int*) malloc (5* sizeof (int)

y

ptr = |

+— 20 bytes of memory —»

Y

ptr = realloc (ptr, 10* sizeof(int));

'

ptr =

40 bytes of memory

35877536

#include <stdio.h=>

#include <stdlib.h=> 35877536
‘j[”f’id main() 35877536
int* ptr: 35877536
int n=5, 1i; 35877536

ptr = (int*)calloc(n, sizeof(int));
if (ptr == NULL) {

printt("Memory not allocated.\n"); after realloc:

, exit(0); 35878608
e 35878608
for (i = 0; i < n; ++i) { 35878608
printf("%d, ", ptr); 35878608
F
S 35878608
ptr = (int*)realloc(ptr, n * sizeof(int)); 35878608
printf("\nafter realloc:\n"); I5R78608
for (1 = 0; 1 < n; ++1) {
printft(" %d, ", ptr); 50878608
I3 35878608
}_ free(ptr); 35878608

RELEASING THE USED SPACE: FREE

Free() function should be called on a pointer that was used either with
“calloc()” or “malloc()”,otherwise the function will destroy the memory
management making a system to crash,

free (ptr)

Functions

« A function is a collection of statements that perform

a specific task

 These functions are very useful to read write and

debug complex programs ;
Types of Functions

* These can be broadly classified into two types

— Built-in functions

— User defined functions

Why are functions needed

1.Improve Modularity

* We can divide a large program into multiple small modules.

» If we write programs using modules, it very easy to understand the program.

« And it's also easy to debug (say, which part doesn't work properly) the program.

2.Code Reusability

« Call a function multiple times, thereby allowing reusability and modularity in C
programming.

« It means that instead of writing the same code again and again for different

arguments, you can simply enclose the code and make it a function and then call it

multiple times by merely passing the various arguments

Why are functions needed

3.Reduce workload:

A big program can be broken into smaller function, then divide the

workload by writing different functions.
4.Speed:

Functions CAN make code faster by coding logic once instead of

repeating several times

o User defined functions :-

The user defined function iIs defined by the user

according to Its requirements.

* Instead of relying only on the built-in functions C
allows us to create our own function called user

defined function

* Parts of user defined function.
— Function Declaration or Function prototype
— Function call or calling Function

— Function Definition or defining a function

* Function Declaration or Function prototype :-

It will inform the compiler about the return type,

function name and number of arguments along

with the data types.

e syntax:

return_type function_name(argument _list);

Function Declaration or Function prototype :-

return_type function_name(argument _list);

— return_type :- is the data type of the value that is

returned or sent from the function.

— Function_name :-function should be given a

descriptive name.
— argument _list :- contains type and names of the

variables that must be passed to the function.

Function Declaration or Function prototype :-

« Example:-
Int large (int x, Inty);
 Is a function declaration with function_name “large” with return
_type “integer” and has two arguments “x” and “y” of integer
type.
 NOTE:-

— 1f we define a function before main () function the there is no
need of function declaration

— If we define the function after main () function then it is
mandatory to declare the function because it will inform the
compiler.

Function call or calling function :-

* Invoking the function with valid number of
arguments and valid data type Is called as

function call.

* To call a function one simply needs to pass the
required parameters along with the function
name and If the function returns the value then

one can store the returned value.

¢ Syntax:
function_name(argumement_list);

« argumement_list :- consist of constant(s) |,

variable(s), or Expression(s).

Calling function and called function :-

* The function main() that calls another function is
called calling function

* The function being called by the calling function
IS known as called function.

#include<stdio.h>=
int fund()

/ { static int count=0;
count ++;

return count;

3
. int maing)
{ printf(*%ed”.fun());
Calling function return 0;
H

Called function

* Example:-
large (m,n);
* The function can be invoked in various ways
— large(m,n); //m and n are variables.

— large(5,8); //5 and 8 are constants

— large(5+2,6); // The first argument is an expression
which is evaluated to 7
— large(2*3,5+3); //is an expression which Is equivalent

to large(6,8);

Function definition or Defining a function

* The declared function must define the same to perform
the specific task.

e Syntax
return_type function_name(argument _list)
{
local variable declaration;
Body of the function;
}

* return_type :- when the function is called the function
may or may not return a value

— If the function returns a value then the return_type
will be any appropriate data type (int, float, char etc)

and we use the keyword “return” to return the value.

— |If the function does not return a value then the
return_type will be “void” and no need to use the

keyword “return”

* function_name :- Is the name of the function.

« argument _list :- these are also called as
parameters. the argument_list refers to the type

order and number of parameters of the function.

* local variable declaration -these are
temporary variables which are required only

within this function.

 Function body:- The body of the function
contains the collection of statements that define
what the function does.

* when the program makes the function call the
program control is transferred to the called
function. This called function performs the
defined task and returns the program control
back to the main() function.

[* C program to find area of circle using
functions */

#include<stdio.h>
float area(float r); // function declaration
void main()
{
float r,X;
printf(""Enter the radius\n");
scanf("%f",&r);
x=area(r); // function call
printf(*'Area ofcircle= %f\n" x);

¥

float area(float r) // function defination

{

float x:
x=3.142*r*r;
return Xx;

return Statement

e A return statement ends the execution of a function, and returns

control to the calling function.

« Syntax. return <expression>;

Example: return 10; return a; return a+b;
« The value will be passed back to the function where it was called.

« Return statement may or may not return the value to the calling

function.

* For functions that have no return statement, after execution of last

statement of called function control returns to the calling function.

« Function that has void as its return statement cannot return any value to

the calling function,

Parameter passing mechanism

There are two methods by which parameters or arguments

can be passed to the function
— Call by value

— Call by reference

Call by value or Argument passing by value

* When an variable or value iIs passed to an function
during its call such function invocation(call) is called

as call by value.

Call by reference or Argument passing by reference

when the address of the variable Is passed to the
function during its invocation(call) such a function Is

called as call by reference.

Call by value

ere values of actual parameters will be copied fo formal parameters and
these two different parameters store values in different locations

int x = 19, y = 20; int fun(int x, int v)
fun(x, y); ’ {

printf(“x = %d: y = %d”: Xy Y); ig;

C program to demonstrate call by value

#include<stdio.h>
Int sum(int n);
void main()
{ -
Int n,X;
printf("Enter the value of n\n");
scanf("%d",&n);
x=sum(n);
printf("Sum of natural numbers=%d\n" x);

}
Int sum(int n)
{
Int res=0,1;
for(i=1;i1<=n;i++)
res=res+i;
return res;

Call by reference

Qutput: x = 20, y = 10

X y

1000 2000

Here the values are not passed to called function, the addresses
of values are passed to the called function

C program to swap two numbers using call by reference or
Argument passing by reference

#include<stdio.h>

void swap(int *a,int *b);

void main()

{
Int a,b;
printf("Enter two numbers\n");
scanf(''%d%d",&a,&Db);
printf("Before Swapping\n a=%d\t b=%d\n",a,b);
swap(&a, &b);
printf(" After Swapping\n a=%d\t b=%d\n",a,b);

by
void swap(int *a, int *b)
{ -
Int temp;
temp=*a;
*a:*b;
*b=temp;

Advantages and Disadvantage of Call by value and Reference

Call by reference Call by value-result

* Advantage:|s more efficient than * Has all advantages and
copying disadvantages of call-by-value

* Disadvantages: and call-by-result together.

— Leads to aliasing: when there
are two or more different
names for the same storage
location

— Side effects not visible from
code itself

Types of function based on arguments and return
values or Types of user defined function

— Function with argument/parameter with return
value.

— Function with argument/parameter without return
value.

— Function without argument/parameter with return
value.

— Function without argument/parameter without
return value.

Function with argument with return value

he arguments are passed from calling function to
the called function.

* based on the received argument values the called
function performs the required action and returns
the value back to calling function (main()
function).

[* C program to demonstrate Function with
argument with return value */

#include<stdio.h>
Int add(int a, int b);
void main()
{
Int a,b,sum;
printf("Enter two numbers\n");
scanf("%d%d",&a,&Db);
sum=add(a,b);
printf("The Sum of two numbers=%d\n",sum);

}

Int add(int a, int b)

{ .
Int sum;
sum=a+b;
return sum;

Function with argument without return value

* The arguments are passed from calling function
to the called function.

 based on the received argument values the
called function performs the required action but
does not return any value back to calling
function (main() function).

/* C program to demonstrate Function with
argument without return value */

#include<stdio.h>

void add(int a, int b);

void main()

{
Int a,b;
printf("Enter two numbers\n");
scanf("%d%d",&a,&Db);

add(a,b);
¥
void add(int a, int b)
{ .
Int sum;
sum=a+b;

printf(""The Sum of two numbers=%ad\n",sum);

Function without argument with return value

* Here no arguments are passed from calling
function to the called function.

* The called function performs the required action
by taking the necessary arguments and returns the
value back to calling function (main() function).

/* C program to demonstrate Function without
argument with return value */

#include<stdio.h>
Int add();
void main()
{ -
Int sum;
sum=add();
printf(*"The Sum of two numbers=%ad\n",sum);

¥

Int add()
{
Int a,b,sum;
printf("Enter two numbers\n");
scanf("%d%d",&a,&Db);
sum=a+b;
return sum;

Function without argument without return value

* Here no arguments are passed from calling
function to the called function.

* The called function performs the required action
by taking the necessary arguments but does not
return any value back to calling function (main()
function).

[* C program to demonstrate Function without
argument without return value */

#include<stdio.h>
void add();
void main()

{

}

void add()
{

add();

Int a,b,sum;

printf("Enter two numbers\n");
scanf("%d%d",&a,&b);

sum=a+b;

printf("The Sum of two numbers=%d\n",sum);

Scope of variables

The scope of a variable is the block of code in the entire program where

the variable is declared, used, and can be modified.

1. Block Scope: A Block In C is a set of statements written within the
right and left braces.

A block may contain more blocks within it, i.e., nested blocks.

#include<stdio.h>
int main() {// Block
The right and left braces are as follows: {//variables within the block
{ } inta=28,b=10;
printf ("The values are: %d, %d\n", a, b);
}

return O;

}

Scope of variables

2. Program scope

Global variables declared outside the function bodies have
a program scope. The availability of global variables stays for the
entire program after its declaration

The value of a is: 8
The value of b 1s: 7.500000

main(){

printf ("The value of a is: %d\n'

printf ("The value of b is: %f\
9;

Scope of variables
3. File scope

* These variables are usually declared stdio. h
a = 20;
outside of all of the functions and RESETEeR
a=a+ 20,
blocks, at the top of the program [T e Eei S I P A

}

and can be accessed from any

main() {
func();
a=a+b5;
printf ("The value of a is: Zd\n",
0;

portion of the program.

« The global static variable is

1

accessible by all the functions in the B

same source file as the variable. The value of a is: 4e

This variable has a File Scope. The value of a is: 45

Actual arguments and Formal arguments :-

* When the function Is called, the values that are passed In
the call are called as actual parameters.

« The formal parameters are written In the function

prototype and function header of the definition .

* These are called as dummy parameters which are assigned

the values from the arguments when the function is called.

Actual arguments and Formal arguments :-

Actual Parameters: The parameters passed to a function.

Formal Parameters: The parameters received by a function.

add(m, n); int add(int a, int b)
L (. .

return (a+b);

Actual }
Parameters

Formal
Parameters

C program to demonstrate actual arguments and formal

#include<stdio.h> arguments

Int perimeter(int x,int y);

void main()

{
Int 1,b,p;
printf("'Enter length and breadth\n"");
scanf(*'%d%d"",&I,&Db);
p=perimeter(l,b); // function call with actual parameters
printf("'Perimeter of Rectangle=%d\n"",p);

}

Int perimeter(int x,inty) // int x, inty are formal parameters
{

Int per; //int per is a local variable

per=2*(x+y);

return per;

« Passing Arrays to functions :- Array elements or

an entire array can be passed to a function such a
mechanism Is called a s passing array to the

function.

program to demonstrate passing array to the functions
#include<stdio.h>

int largest(int a[20],int n); int largest(int a[20],int n)
void main() t
{ int max.i;
int a[20],n,i.max; max=a[0];
printf("Enter the value of n'n"); for(i=1;i<n;it++)
scanf(""%d",&n); 1
printf ("Enter %d values'n" .n); if(a[i]>max)
for(i=0;i<n:i++) max=a[i];
scanf("%0d" . &ali]); §
max=largest(a,n); return max;

printf("Largest element in array=Yod'n",max); 5

}

