
Module-5

Structure, Union and Files

• Structure :- Structure is a collection of one or

more variables of same or different data types

grouped to gather under a single name for easy

handling.

• Structure is a user defined data type that can

store related information about an object.

• Declaration of a Structure :- A structure is

declared using the keyword struct followed by

structure name and variables are declared within

a structure

Declaration of a Structure

• A structure is declared using the keyword

struct followed by structure name and

variables are declared within a structure

• The structure is usually declared before the
main() function.

• Syntax : -

struct structure_name

{

datatype member 1;

datatype member 2;

datatype member 3;

…………………..

…………………..

datatype member n;

};

• Example :-

struct employee

{

int emp_no;

char name[20];

int age;

float emp_sal;

};

Initialization of structure

A structure initialization is done after the

declaration of the structure

struct employee {

int emp_no;

char name[20];

int age;

float emp_sal;

} ;

emp1={65421, “Hari”,29,25000.00};

The order of values enclosed in the braces must match the order

of members in the structure definition

Accessing structure members

• A structure uses a .(dot) [Member Access

Operator] to access any member of the

structure.

• emp1.emp_no = 65421;

Accessing structure members

The order of values enclosed in the braces must match the
order of members in the structure definition

#include<stdio.h>

#include<string.h>

struct employee

{

int emp_no;

char empname[20];

int age;

float emp_sal;

};

void main()

{

struct employee emp1;

emp1.emp_no = 65421;

emp1.empname=“Hari”;

emp1.age=29;

emp1.emp_sal=25000.00;

printf("Employee Number=%d\n",emp1.emp_no);

printf("Employee Name=%s\n",emp1.empname);

printf("Employee Age=%d\n",emp1.age);

printf("Employee Salary=%f\n",emp1.emp_sal);

}

#include<stdio.h>

#include<string.h>

struct employee

{

int emp_no;

char empname[20];

int age;

float emp_sal;

};

void main()

{

struct employee emp1;

printf("Enter Employee Number:");

scanf("%d",&emp1.emp_no);

printf("Enter Employee Name:");

scanf("%s",emp1.empname);

printf("Enter Employee age:");

scanf("%d",&emp1.age);

printf("Enter Employee salary:");

scanf("%f",&emp1.emp_sal);

printf("Employee Number=%d\n",emp1.emp_no);

printf("Employee Name=%s\n",emp1.empname);

printf("Employee Age=%d\n",emp1.age);

printf("Employee Salary=%f\n",emp1.emp_sal);

}

Passing Structures Through Pointers

Structure pointer is defined as the pointer which points to the address of

the memory block that stores a structure known as the structure

pointer.

https://www.geeksforgeeks.org/pointers-in-c-and-c-set-1-introduction-arithmetic-and-array/
https://www.geeksforgeeks.org/structures-c/

#include <stdio.h>
#include <string.h>
struct Student {

int roll_no;
char name[30];
char branch[40];
int batch;

};
int main()
{

struct Student s1;
struct Student* ptr = &s1;
s1.roll_no = 27;
strcpy(s1.name, "Kamlesh Joshi");
strcpy(s1.branch, "Computer Science And Engineering");
s1.batch = 2019;
printf("Roll Number: %d\n", (*ptr).roll_no);
printf("Name: %s\n", (*ptr).name);
printf("Branch: %s\n", (*ptr).branch);
printf("Batch: %d", (*ptr).batch);
return 0;

}

Array of Structures

• An array within a structure is a member of the structure

and can be accessed just as we access other elements of

the structure.

• If we want to store the data of 100 employees we would

require 100 structure variables from emp1 to emp100

which is definitely impractical the better approach

would be to use the array of structures.

/* C program to illustrate array of structures */

#include<stdio.h>

#include<string.h>

struct employee

{

int emp_no;

char empname[20];

int age;

float emp_sal;

};

void main()

{ struct employee emp[20];

int n,i;

printf("Enter the number of employee entries\n");

scanf("%d",&n);

for(i=0;i<n;i++)

{ printf("Enter the details of employee %d\n",i+1);

printf("Enter Employee Number:");

scanf("%d",&emp[i].emp_no);

printf("Enter Employee Name:");

scanf("%s",emp[i].empname);

printf("Enter Employee age:");

scanf("%d",&emp[i].age);

printf("Enter Employee salary:");

scanf("%f",&emp[i].emp_sal);

}

printf("\nEMP_NO\t EMP_NAME\t EMP_AGE\t\t

EMP_SALARY \n");

for(i=0;i<n;i++)

{

printf("%d\t%s\t%d\t%f\n",emp[i].emp_no,emp[i].empn

ame,emp[i].age,emp[i].emp_sal);

}

}

• Nested Structures :- A nested structure is a structure
that contains another structure as its member.

Syntax :-

struct structure_name1

{

datatype member 1;

datatype member 2;

};

struct structure_name2

{

datatype member 1;

datatype member 2;

struct structure_name1 var1;

};

/* C program to demonstrate nested structures */

#include<stdio.h>

struct stud_dob

{

int day;

int month;

int year;

};

struct student

{

int rollno;

char sname[20];

struct stud_dob date;

};

void main()

{

struct student s;

printf("Enter Student Rollno :");

scanf("%d",&s.rollno);

printf("Enter Student Name :");

scanf("%s",s.sname);

printf("Enter date of birth as day month year:");

scanf("%d%d%d",&s.date.day,&s.date.month,&s.date.year);

printf("Student Details are\n");

printf("Student Rollno = %d\n",s.rollno);

printf("Student Name=%s",s.sname);

printf("Student DOB= %d-%d-%d\n", s.date.day, s.date.month,
s.date.year);

}

Unions

• A union is a special data type available in C that allows to

store different data types in the same memory location.

• Union can be defined with many members, but only one

member can contain a value at any given time.

• Syntax:

union union_name

{

datatype field_name;

datatype field_name; // more variables

}union_variable;

Accessing Union Members

#include <stdio.h>

union Job {

float salary;

int workerNo;

} j;

void main()

{ j.salary = 12.3;

j.workerNo = 100; // when j.workerNo is assigned a value, j.salary will no

longer hold 12.3 size of both the data type is 4byte

printf("Salary = %f\n", j.salary);

printf("Number of workers = %d", j.workerNo);

}

Output

Salary = 0.0

Number of workers = 100

Difference between structure and union

Difference between structure and union

Unions
Structure Union

Structure is a collection of one or more variables of same or

different data types grouped to gather under a single name

for easy handling.

A union is a special data type available in C that allows

to store different data types in the same memory

location.

Arrays of Union Variables

We can create array of unions similar to creating array of any primitive data type.

general form of declaration for array of union.

union <union_name> <array_name>[size];

Consider the following example,

union values {

int int_val;

float float_val;

};

union values arr[2];

Here, arr is an array of union which can hold two union elements.

Arrays of Union Variables
Array of union initialization:

union values arr[2] = {{1}, {2}};The above statement initializes first union

member of both the array elements.

Files
• A file is a container in computer storage devices used for storing data.

Why files are needed?

• When a program is terminated, the entire data is lost. Storing in a file
will preserve your data even if the program terminates.

Types of Files: there are two types of files you should know about:

1. Text files 2. Binary files

1. Text files

Text files are the normal .txt files. You can easily create text files using
any simple text editors such as Notepad.

When you open those files, you'll see all the contents within the file as
plain text. You can easily edit or delete the contents.

2. Binary files

Binary files are mostly the .bin files in your computer.

Instead of storing data in plain text, they store it in the binary form (0's
and 1's).

File Operations

1. Creating a new file

2. Opening an existing file

3. Closing a file

4. Reading from and writing information to a file

1. Creating a new file

When working with files, you need to declare a pointer of type file. This

declaration is needed for communication between the file and the program.

FILE * fptr;

File Operations

2. Opening an existing file

Opening a file is performed using the fopen() function

defined in the stdio.h header file.

writing as per the mode 'w’.

existing file for reading in binary mode 'rb'

f

File Operations

3. Closing a file

The file (both text and binary) should be closed after reading/writing.

Closing a file is performed using the fclose() function.

4. Reading and writing to a text file

For reading and writing to a text file, we use the

functions fprintf() and fscanf().

File Operations - open and close mode

NULL is a special value in C

that represents a null pointer,

which essentially means that

the pointer is not pointing to

any valid memory location.

File Operations – Write mode

File Operations- Append

File Operations

Detecting the End of File

• "End of file" (EOF) is a term used in computer programming and

operating systems to indicate the point in a file where there is

no more data to be read.

• When a program reads data from a file, it typically keeps reading

until it encounters the end of file marker, at which point it

knows that there is no more data to be processed.

Detecting the End of File

• The function eof() is used to check the end of file after EOF mark.

• It tests the end of file indicator.

• It returns non-zero value if successful otherwise, zero.

Step 1: Open file in write mode.

Step 2: Until character reaches end of the file, write each

character in file pointer.

Step 3: Close file.

Step 4: Again open file in read mode.

Step 5: Reading the character from file until file pointer equals

to EOF.

Step 5: Print character on console.
Step 6: Close file.

Detecting the End of File

