

MANGALORE INSTITUTE OF TECHNOLOGY & ENGINEERING

(A Unit of Rajalaxmi Education Trust®, Mangalore)
Autonomous Institute affiliated to VTU, Belagavi, Approved by AICTE, New Delhi Accredited by NAAC with A+ Grade & ISO 9001:2015 Certified Institution

Model Question Paper

Fifth Semester BE Degree Examination

Mechatronics System Design

Time: 3 Hours (180 Minutes)

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.

2. M: Marks, L: RBT (Revised Bloom's Taxonomy) level, C: Course outcomes

A Explain the main challenges faced in the integrated design of a Mechatronic system. 10 L2 COI	2. M: Marks, L: RB1 (Revisea Bloom's Taxonomy) level, C: Course outcomes. Module -1 M L C								
A System. 10 L2 COI	1		-	IVI	L	C			
b. Explain the steps involved in the Mechatronics design process of a electric fan. OR a. Illustrate the key elements of a Mechatronic system. b. Explain the implementation of supervisory control structures in Mechatronic applications. Module - 2 Deduce Y/ R Utilizing Block diagram reduction technique of fig.3a Fig.3 a Reduce the block diagram shown in fig.3b and Deduce C/R. B. Reduce the block diagram shown in fig.3b and Deduce C/R. Fig.3 b 10 L3 CO2	Q1	a.		10	L2	CO1			
a. Illustrate the key elements of a Mechatronic system. b. Explain the implementation of supervisory control structures in Mechatronic applications. Module - 2 Deduce Y/ R Utilizing Block diagram reduction technique of fig.3a a. Fig.3 a Reduce the block diagram shown in fig.3b and Deduce C/R. B. Reduce the block diagram shown in fig.3b and Deduce C/R. Reduce the block diagram shown in fig.3b and Deduce C/R. Reduce the block diagram shown in fig.3b and Deduce C/R.		b.	Explain the steps involved in the Mechatronics design process of a electric fan.	10	L2	CO1			
b. Explain the implementation of supervisory control structures in Mechatronic applications. Module - 2 Deduce Y/ R Utilizing Block diagram reduction technique of fig.3a a. Fig.3 a Reduce the block diagram shown in fig.3b and Deduce C/R. Brig.3 b Reduce the block diagram shown in fig.3b and Deduce C/R. Reduce the block diagram shown in fig.3b and Deduce C/R.			OR						
A. Deduce Y/ R Utilizing Block diagram reduction technique of fig.3a a. Fig.3 a Reduce the block diagram shown in fig.3b and Deduce C/R. B. Fig.3 b Reduce the block diagram shown in fig.3b and Deduce C/R. B. Fig.3 b CO2		a.	Illustrate the key elements of a Mechatronic system.	10	L2	CO1			
A. Deduce Y/R Utilizing Block diagram reduction technique of fig.3a a. Fig.3 a Reduce the block diagram shown in fig.3b and Deduce C/R. Brig.3 b Reduce the block diagram shown in fig.3b and Deduce C/R. Reduce the block diagram shown in fig.3b and Deduce C/R.	Q2	b.		10	L2	CO1			
a. $\frac{Fig.3 \text{ a}}{\text{Fig.3 b}}$ Reduce the block diagram shown in fig.3b and Deduce C/R. b. $\frac{G_3}{Fig.3 \text{ b}}$ 10 L3 CO2				1					
b. $R \longrightarrow G_1 \longrightarrow G_2 \longrightarrow G_4 \longrightarrow C$ Fig.3 b	Q3	a.	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	L3	CO2			
UK		b.	Reduce the block diagram shown in fig.3b and Deduce C/R. G_1 G_2 G_3 G_4 G_4 G_5	10	L3	CO2			

23MTOE311

23NI10E311								
Q4	a.	Construct the block diagram model and deduce the transfer function $\frac{x^2}{F}$ for the given mechanical system shown in fig.4a utilized to measure acceleration $\frac{x^2}{F}$ for the given mechanical system shown in fig.4a utilized to measure acceleration $\frac{x^2}{F}$ for the given mechanical system shown in fig.4a utilized to measure acceleration $\frac{x^2}{F}$ for the given mechanical system shown in fig.4a utilized to measure acceleration $\frac{x^2}{F}$ for the given mechanical system shown in fig.4a utilized to measure acceleration $\frac{x^2}{F}$ for the given mechanical system shown in fig.4a utilized to measure acceleration $\frac{x^2}{F}$ for the given mechanical system shown in fig.4a utilized to measure acceleration $\frac{x^2}{F}$ for the given mechanical system shown in fig.4a utilized to measure acceleration $\frac{x^2}{F}$ for the given mechanical system shown in fig.4a utilized to measure acceleration $\frac{x^2}{F}$ for the given mechanical system shown in fig.4a utilized to measure acceleration $\frac{x^2}{F}$ for the given mechanical system shown in fig.4a utilized to measure acceleration $\frac{x^2}{F}$ for the given mechanical system shown in fig.4a at $\frac{x^2}{F}$ for the given mechanical system shown in fig.4a at $\frac{x^2}{F}$ for the given mechanical system shown in fig.4b $\frac{x^2}{F}$ for the given mechanical system shown in fig.4b $\frac{x^2}{F}$ for the given mechanical system shown in fig.4b $\frac{x^2}{F}$ for the given mechanical system shown in fig.4b $\frac{x^2}{F}$ for the given mechanical system shown in fig.4b $\frac{x^2}{F}$ for the given mechanical system shown in fig.4b $\frac{x^2}{F}$ for the given mechanical system shown in fig.4b $\frac{x^2}{F}$ for the given mechanical system shown in fig.4b $\frac{x^2}{F}$ for the given mechanical system shown in fig.4b $\frac{x^2}{F}$ for the given mechanical system shown in fig.4b $\frac{x^2}{F}$ for the given mechanical system shown in fig.4b $\frac{x^2}{F}$ for the given mechanical system shown in fig.4b $\frac{x^2}{F}$ for the given mechanical system shown in fig.4b $\frac{x^2}{F}$ for the given mechanical system shown	10	L3	CO2			
	b.	Deduce the following differential equations in <i>D</i> -operator form: a. $\dot{x}(t) + r(t) = 2x(t)$ b. $\ddot{x}(t) + x(t) = 0$ c. $\dot{x}(t) + \int x(\tau)d\tau = x(t)$ d. $\ddot{x}(t) + 2\ddot{x}(t) + x(t) = \dot{r}(t) + 3r(t)$	10	L3	CO2			
		Module - 3	<u> </u>		l			
	a.	Explain with diagram the working principle of permanent magnet stepper motor.	10	L2	CO3			
Q5	b.	Explain the difference between continuous and discrete signals with suitable examples.	10	L2	CO3			
		OR						
	a.	Explain steps to identify a periodic signal and give an example for a non-periodic signal.	10	L2	СОЗ			
Q6	b.	A continuous time signal x(t) is shown in fig.6b. Sketch each of the following signals with respect to given signal x(t) 1. x(t-2) 2. x(2t) 3. x(-t) Fig.61	10	L2	CO3			
		Fig.6 b		1				
		A motor to be driven by a digital signal has a speed variation of 200 rev/min per volt with minimum rpm at 5 V and maximum at 10 V. Determine the minimum speed word, maximum speed word, and speed change for change of 1 bit. Use a 5-bit, 15 V reference, D/A converter, as shown in fig.7a	10		60.1			
Q7	a.	$\begin{array}{c c} & & & & \\ \hline & & \\ \hline & & & \\ \hline & &$	10	L3	CO4			
	b.	Determine the binary equivalent word that results from a 6.424 V input to a	10	L3	CO4			
	υ.	5-bit A/D converter with a 10 V reference.	10	LS	CU4			
OR								

23MTOE311

Q8	a.	An inverting amplifier uses $Rin = 12k\Omega$ and $Rf = 120k\Omega$. The opamp is powered from $\pm 15V$ supply rails and can swing to within 1.5V of each rail. Assume an ideal opamp. Determine the closed loop voltage gain Av. If the input is $Vin = 0.25V$, calculate the output voltage.	10	L3	CO4		
	b.	Determine how many bits a converter must have to provide output increments of 0.02 volts or less. The reference is 10 V.	10	L3	CO4		
	Module – 5						
00	a.	Considering a car park barrier system explain the detection of vehicle and controls the opening and closing of the barrier.	10	L2	CO5		
Q9	b.	Explain the function of an ECU in an automotive system and how it manages engine parameters.	10	L2	CO5		
OR							
010	a.	Explain the ABS system which enhances vehicle safety by preventing wheel lock-up during braking.	10	L2	CO5		
Q10	b.	Explain how mechatronic components work together to read and write data in a hard disk drive.	10	L2	CO5		