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MODULE – 4 : Electrical Properties of Materials 

Syllabus:  

Conductors: Quantum Free Electron Theory of Metals, Density of States, Fermi-energy, Fermi factor, 

Variation of Fermi factor with temperature, Electron concentration (qualitative discussion), Expression 

for electrical conductivity. 

Semiconductors: Expression for the electron and hole concentrations, Expression for electrical 

conductivity in semiconductor. 

Hall effect, expression for Hall coefficient.  

Dielectrics: Polarization and its types in dielectric materials, Internal field, Clausius – Mossotti equation, 

Numeral Problems. 

 

  CONDUCTORS 

Free–electron concept  
Metal is made up of atoms and these atoms consist of valence electrons, which are responsible for 

electrical conduction in the bulk state of the metal. For e.g.: A copper atom consists of 29 electrons out of 

which 28 electrons are bound in the 3 shells forms the core and one electron remaining in the fourth shell is 

the free valence electron. As a whole an atom is neutral. 

 When a large number of copper atoms join to form a metal the boundaries of the neighbouring atoms 

slightly overlap on each other. Due to this, the valence electrons find continuity from atom to atom and can 

move easily throughout the body of the metal, but are restricted within the boundaries of the solid. 

 

 Since each atom contributes equal number of electrons, there will be a very large number of electrons 

which are free in a metal. Such electrons are called as free electrons and they account for the bulk properties 
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of the metal such as electrical conductivity, thermal conductivity etc. They are also called conduction 

electrons. 

 The disconnection of the valence electrons results in a virtual loss of a negative charge for that atom 

so that it becomes a positive ion. The array of such ions forms a three-dimensional structure called a lattice. 

Under thermal equilibrium conditions, the free electrons in a solid are in a state of random motion. 

At temperature T, they possess an average kinetic energy given by        
 1

2
mvth 

2 =
3

2
kT 

Where vth is the mean thermal velocity. 

Quantum Free Electron Theory of Metals 

In 1928, Arnold Sommerfeld succeeded in overcoming many of the drawbacks of the classical free electron 

theory by using Pauli’s exclusion principle and Fermi-Dirac statistics is known as quantum free electron 

theory. The following are the assumptions of quantum free electron theory.  

 

The main assumptions of quantum free electron theory are:  

1. The energy values of the conduction electrons are quantized. They can have only discrete energy values.  

2.  The distribution of electrons in the various allowed levels occur as per Pauli’s exclusion principle which 

states that no two electrons can have same set of quantum numbers. 

3. The distribution of energy among the free electrons is according to Fermi-Dirac statistics.  

4. The electrons travel in a constant potential inside the metal but stay confined within its boundaries.  

5. The attraction between the electrons and the lattice ions and the repulsion between the electrons are 

ignored. 

 

Energy bands in solids 

• The discrete energy level of an atom becomes bands during  the  formation  of solid due to mutual 

influence of constituent atoms 

• Each band consists of a large number of energy levels which correspond to a range of energy values. 

• The bands are separated by certain gaps called forbidden bands  or  energy band gaps. 

• The electron can occupy only those energy levels which lie within an  energy band. 

• Because of quantization rules there is a limit on the number of electrons which can fill an energy band. 

• If an energy band contains the maximum quota of electrons, it is said to be filled band 

• An empty band or partially filled band provides energy levels to which electrons can be energized from 

lower levels or bands. 
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• In every energy band diagram, there will be a band called valence band below which all the bands are 

occupied and above which all the bands are empty. 

• The empty band which is immediately above the valence is called conduction band. 

• The gap between the valence band the conduction band is called the forbidden band or energy gap. 

 

Fermi Energy: 

   There are ‘N’ allowed energy levels for free electrons in a metal which are separated by 

energy differences that are the characteristics of the material and are quantized. As per Pauli’s exclusion 

principle, each allowed energy level can accommodate a maximum of two electrons with opposite spin. The 

filling up of the electrons in the energy levels should be undertaken from the lowest energy level. So, in each 

energy level there are two electrons one with spin up and other with spin down. However there are still 

higher energy levels left vacant. 

  “The energy of the highest occupied energy level at zero degree absolute is called Fermi energy 

(EF) and the energy level is referred as Fermi level” 

  At absolute zero temperature i.e. when the metal is not under the influence of any electrical field or 

thermal energy, no electrons will be present above the Fermi level. They are completely empty and those 

levels below Fermi level are completely filled.  

 

 

Density of States 

In a solid material, the permitted energy levels are in terms of bands. Each band is spread over an energy 

range of few eVs and the number of energy levels in each band is extremely large. Because of such 

distribution, the energy values appear to be virtually continuous over the band. A closer look reveals that 

the energy levels are not evenly distributed in the band. i.e. the density of energy levels in the band varies 

with the energy. This is realized through a function known as density of states function denoted as g (E). 

“It is the number of allowed energy levels per unit energy interval in the band associated with the material 
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per unit volume”. 

The number of states in an energy range E and E+dE for the electrons in a 3- dimensional solid of unit 

volume or Density of states in the energy interval dE at ‘E’ is given by 

𝑔(𝐸)𝑑𝐸 = (
8√2𝜋𝑚

3
2⁄

ℎ3
) 𝐸−1

2⁄ 𝑑𝐸 

Fermi – Dirac statistics: 

 In a metal, there is large number of free electrons and each of them possesses an energy 

corresponding to the energy state of the valence band. Under thermal equilibrium, the free electrons acquire 

energy obeying the statistical rule known as Fermi – Dirac statistics. The electrons are identical particles 

and indistinguishable particles.  Fermi – Dirac statistics permit the evaluation of the probability of finding 

electrons occupying energy levels in a certain energy range. This evaluation is done through a function 

called the Fermi factor. 

Fermi Factor: 

  At temperatures above absolute zero, the material will be receiving thermal energy from the 

surroundings. So, the electrons just below the Fermi level absorb the thermal energy and will occupy the 

higher empty levels. The electrons occupying energy levels far below the Fermi level cannot absorb this 

energy because there are no unoccupied higher energy levels into which the electrons can come into, when 

their energies increase by small amount.   

  Though such excitations seem to be random the resulting distribution of electrons in various 

energy levels after excitation will be systematic. The distribution is governed by a statistical function when 

the system is in thermal equilibrium (steady state).  

  The probability ‘f(E)’ that a given energy state with energy ‘E’is occupied at a steady 

temperature is given by  

   𝒇(𝑬) =
𝟏

𝒆
𝑬−𝑬𝑭

𝒌𝑻 +𝟏
 

Here f(E) is called Fermi factor. 

  “Fermi factor is defined as the probability of occupation of a given energy state for a material 

in thermal equilibrium”. 
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Dependence of Fermi factor on temperature and effect on the occupancy of energy levels: 

  The probability ‘f(E)’ that a given energy state with energy ‘E’ is occupied at a steady 

temperature is given by  

    𝒇(𝑬) =
𝟏

𝒆
𝑬−𝑬𝑭

𝒌𝑻 +𝟏
 

The different cases of distribution are as follows;  

CASE1: Probability of occupation for E < EF at T = 0K 

            When T = 0K and E < EF, we have  

                     𝑓(𝐸 ) =
1

𝑒−∞+1
=

1

0+1
= 1 

                                ∴ f(E) = 1, for E < EF 

It means that the energy level is certainly occupied and E < EF applies to all the energy levels below ‘EF’. 

CASE2: Probability of occupation for E > EF at T = 0K 

  When T = 0K and E < EF, we have  

              𝑓(𝐸) =
1

𝑒+∞+1
=

1

∞+1
= 0 

                              ∴ f(E) = 0, for E > EF 

               ∴ At T = 0K, all the energy levels above the Fermi level are unoccupied. 

Thus, at T = 0K, the variation of f(E) for different energy values, becomes a step function as shown in the 

figure below 

CASE 3: Probability of occupation at ordinary temperature: 

  At ordinary temperatures f(E) remains 1 for E << EF, and starts decreasing from 1 as ‘E’ 

becomes closer to EF as sown in fig. 

 At E = EF we have, 

                               𝑓(𝐸) =
1

𝑒0+1
=

1

1+1
=

1

2
 

                        ∴The value of f(E) becomes ½ at E = EF 

 Thus, Fermi energy is the most probable energy or the average energy of the electrons which undergo 

transitions across the Fermi level at temperature above zero degree absolute.  
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Electron concentration:  

Metals, such as copper and aluminium, are held together by bonds that are very different from those of 

molecules. Rather than sharing and exchanging electrons, a metal is essentially held together by a system 

of free electrons that wander throughout the solid. The simplest model of a metal is the free electron model. 

This model views electrons as a gas.  In a metal, due to the randomness in the direction of motion of the 

conduction electrons, the probability of finding an electron moving in any given direction is equal to finding 

some other electron moving in exactly the opposite direction in the absence of an electric field. 

In the absence of external electric field, the motion of electrons in a metal will be random, because of this 

there is no drift but when external electric field is applied the electrons slowly drift in a direction opposite 

to the electric field. 

                                                                  𝑛𝑒 =
𝑚𝜎

𝑒2𝜏
 

𝑊ℎ𝑒𝑟𝑒 ∶ ne is the electron concentration 

               e is the electron charge 

                 𝜏 is the mean collision time 

               m is the mass of the electron 

               σ is the electric conductivity 

 

Expression for electrical conductivity and resistivity based on quantum free   electron 

theory 

The momentum of the free electrons in the metal is given by 

                                       𝑝 =
ℎ

𝜆
    ;  but  𝑘 =

2𝜋

𝜆
 

Hence,                𝑝 =
ℎ𝑘

2𝜋
 

𝑚𝑣 =
ℎ𝑘

2𝜋
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𝑣 =
ℎ𝑘

2𝜋𝑚
 ………………. (1) 

 

In thermal equilibrium, the free electrons are moving in random fashion. The velocities of these free electrons 

can be plotted in velocity space or k-space by assuming vF (Fermi velocity) as maximum velocity. The 

resulting sphere having  vF  as the radius is known as Fermi sphere/ Fermi surface. Only those 

electrons present near the Fermi surface can participate in electrical conduction. When no 

electric is applied, centre of the sphere coincides with the origin of the k-space so that the net 

momentum is zero. 

 
 
When an electric filed is applied, the electrons are accelerated in the direction of the force. 

The acceleration of the electrons is given by 

Differentiating (1) w.r.t. ‘t’ we get, 

𝑑𝑣

𝑑𝑡
=  

ℎ

2𝜋𝑚

𝑑𝑘

𝑑𝑡
 ⇒      𝑚

𝑑𝑣

𝑑𝑡
=  

ℎ

2𝜋

𝑑𝑘

𝑑𝑡
… … … . . (2) 

  we know that Force applied on the electron in the applied field is 

F= eE 

ma = eE 

𝑚
𝑑𝑣

𝑑𝑡
= 𝑒𝐸 

              Therefore,  
ℎ

2𝜋

𝑑𝑘

𝑑𝑡
=  𝑒𝐸 ⇒ 𝑑𝐾 =

2𝜋𝑒𝐸𝑑𝑡

ℎ
… … … … (3) 

If the field is applied for time period ‘t’, then integrating the above equation from 0→t, and 

applying the limits we get 

𝑘(𝑡) − 𝑘(0) =  
2𝜋𝑒𝐸𝑡

ℎ
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𝛥𝑘 =  
2𝜋𝑒𝐸𝑡

ℎ
… … … … . . (4) 

Thus, if the field is applied at time t=0 to filled Fermi sphere centred at the origin of  the k-space, then in 

characteristic time , 𝜏 = 𝜏𝐹 =
𝜆𝐹

𝜐𝐹
   ,  the sphere might have moved to a new centre at  

𝛥𝑘 =  
2𝜋𝑒𝐸

ℎ

𝜆𝐹

𝜐𝐹
… … … … . . (5) 

The steady state current density is given by 

𝐽 = 𝑛𝑒Δ𝑣 

Δ𝑣 =  
ℎΔ𝑘

2𝜋𝑚
  

𝐽 = [
𝑛𝑒ℎΔ𝑘

2𝜋𝑚∗
] … … … … … . . (6) 

Here m* is the effective mass of the electrons. The electrical conductivity (σ) is related to current density 

by  

J = E ……………………(7) 

From equation (6) and (7) 

𝜎 =
𝑛𝑒ℎΔ𝑘

2𝜋𝑚∗𝐸
………………………(8) 

Substituting from equation (5) in equation (8) we get 

𝜎 =
𝑛𝑒ℎ

2𝜋𝑚∗𝐸
(

2𝜋𝑒𝐸

ℎ

𝜆𝐹

𝑣𝐹
) 

𝜎 =
𝑛𝑒2

𝑚∗
(

𝜆𝐹

𝑣𝐹
) 

Where m* is the effective mass of electrons.  

Also, the expression for resistivity is given by   𝜌 =
𝑚∗𝑣𝐹

𝑛𝑒2𝜆
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SEMICONDUCTORS 

Conductivity of solids can be explained on the basis of band theory. The important          energy 

bands in solids are 

1. Valence Band: The electron in the outer most orbit of an atom  is  known  as valence electron. 

The range of energies possessed by valence electrons is known as valence band. The valence 

band may be completely or partially filled. 

2. Conduction Band: The range of energies possessed by conduction electrons is known as 

conduction band. In some metals, the valence electron may be loosely packed and may get 

detached to become free electron. These free electrons are responsible for conduction of current in 

a conductor and are hence  called conduction electrons. 

Significance of Band Gap Eg 

The band gap energy Eg is minimum amount of energy required for breaking a covalent bond 

and to excite an electron from valence band to conduction band. The energy required to break 

a covalent bond in Ge is 0.72eV and for Si it is 1.12eV at 300K. 

Forbidden energy band/gap: The separation between bottom of conduction band and top of 

valence band in the energy level diagram of solids is known as forbidden energy band. There are 

no electrons in the forbidden energy gap. 

 

Classification of semiconductors: 

The materials having moderate electrical conductivity are called as 

semiconductors. These materials have a completely filled VB and completely filled CB at 

0K. Semiconductors are classified into two types on the basis of concentrations of electrons 

and holes in the material. 
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1. Intrinsic or pure semiconductor 

2. Extrinsic or doped semiconductor 

 

Fermi Level in semiconductors: 

 In semiconductors, at Temperature, T = OK the conduction band (CB) is completely empty and the valence 

band (VB) is completely filled. But, at ordinary temperatures such as room temperatures, electrons get 

excited from the top of the valence band to conduction band and occupy energy levels at the bottom of the 

conduction band. As CB is a higher energy band, the electrons undergo de-excitation to VB. This process 

of excitation and de-excitation continues and the electron involved becomes conduction electrons. This 

means that the conduction electrons are distributed between the energy levels in the bottom of the CB and 

top of the VB. The average energy of all such energy levels is called Fermi level of the semiconductor. In 

the case of pure or intrinsic semiconductors, the Fermi level corresponds to level in the forbidden gap 

exactly in between CB and VB. Fermi level also signifies the average energy of the conduction electrons. 

4*
3
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Expression for electrical conductivity of a semiconductor: 

 

 

 Consider a semiconductor of area cross section ‘A’. Let an electric field of ‘E’ is applied 

to the conductor. Let𝑣𝑒and 𝑣ℎbe the drift velocities of electrons and holes respectively due to applied 

field E. 

The current due to electron is  

𝐼𝑒 = 𝑛𝑒𝑒𝐴𝑣𝑒 → (1) 

The current due to holes is  

𝐼ℎ = 𝑛ℎ𝑒𝐴𝑣ℎ → (2) 

   

Here and 𝑛𝑒&𝑛ℎare the number of electrons and holes per unit volume.  

The total current is given by 

      𝐼 = 𝐼𝑒 + 𝐼ℎ =  𝑛𝑒𝑒𝐴𝑣𝑒 + 𝑛ℎ𝑒𝐴𝑣ℎ  

The total current is the sum of the current due electrons and holes. The total current density is given by  

   𝐽 = 𝑛𝑒𝑒𝑣𝑒 + 𝑛ℎ𝑒𝑣ℎ → (3) 

By definition, mobility of charge carriers is the drift velocity per unit electric filed. 

Therefore the drift velocity of electrons is  

      𝑣𝑒 = 𝜇𝑒𝐸 𝜇ℎ =
𝑣ℎ

𝐸
 

and the drift velocity of holes is  

      𝑣ℎ = 𝜇ℎ𝐸    

where𝜇𝑒&𝜇ℎare the motilities of electrons and holes respectively.  

Substituting for 𝑣𝑒&𝑣ℎ in equation (3) we get 

    𝐽 = 𝑛𝑒𝑒𝜇𝑒𝐸 + 𝑛ℎ𝑒𝜇ℎ𝐸 → (4) 

We have  Ohm’s law    𝐽 = 𝜎𝐸 → (5) 

Where 𝜎 is conductivity, which is defined as the current density per unit applied electric field. 

Comparing equation (4) and (5), we get 

     𝜎 = 𝑛𝑒𝑒𝜇𝑒 + 𝑛ℎ𝑒𝜇ℎ → (6) 

This equation gives total conductivity of a semiconductor. 

For intrinsic semiconductors, 𝑛𝑒 = 𝑛ℎ = 𝑛𝑖; 𝑛𝑖is the intrinsic carrier concentration. Hence 

𝜎𝑖 = 𝑛𝑖𝑒(𝜇𝑒 + 𝜇ℎ) 

E 

A 
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Electron and hole concentration: 

The number of electrons per unit volume in the conduction band of a semiconductor is known as electron 

concentration. Similarly, the number of holes per unit volume in the valence band of a semiconductor 

is known as hole concentration.  

The electron concentration 𝑛𝑒is given by 

𝒏𝒆 =
𝟒√𝟐

𝒉𝟑
(𝝅𝒎𝒆

∗𝒌𝑻)
𝟑

𝟐⁄ 𝒆
(

𝑬𝑭−𝑬𝒈

𝒌𝑻
)

 

The hole concentration 𝑛ℎis given by   

                   
𝒏𝒉 =

𝟒√𝟐

𝒉𝟑
(𝝅𝒎𝒉

∗ 𝒌𝑻)
𝟑

𝟐⁄ 𝒆−(
𝑬𝑭
𝒌𝑻

)
 

In the above equation, 𝐸𝐹 is the Fermi energy of the semiconductor, 𝐸𝑔is the energy gap of the 

semiconductor, 𝑚𝑒
∗and 𝑚ℎ

∗are the effective masses of electrons and holes, T is the absolute temperature.  

        Hall Effect 

If a material carrying current is placed in a transverse magnetic field, an electric field is produced 

in the material in a direction perpendicular to both the current and magnetic field. This phenomenon is 

called Hall Effect. The electric field generated is called Hall field and corresponding voltage is Hall 

voltage. 

Expression for Hall coefficient : 
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Consider a rectangle slab of a semiconductor material in which a current ‘I’ is flowing in positive               

x-direction. Let the semiconductor material be of n type, which means that the charge carriers are 

electrons. 

 

Let a magnetic field, B is applied along Z-direction as shown in the figure. 

Under the influence of a magnetic field, the electrons experience the Lorentz-force, FL given by 

𝐹𝐿 = −𝐵𝑒𝑣 → (1); -ve is due to electron charge  

Where ‘e ‘is the magnitude of charge on the electron and ‘v’ is drift velocity of the electrons. 

Applying the Flemings left -hand rule, the force FL is acting on the electron along the negative y-

direction. The electrons are therefore deflected downwards resulting in decrease and increase in 

electron density at the upper and lower surfaces respectively. Hence a potential difference VH called 

Hall voltage appears between the upper and lower surface of the semiconductor material. This voltage 

establishes an electric field EH, called Hall field across the conductor in the negative y- direction.  

  

The field EH, exerts an upward force FH on the electrons given by,  

𝐹𝐻 = −𝑒𝐸𝐻 → (2) 

 Now as the deflection of electrons continues in the downward direction due to Lorentz force 

FL, the Hall field increases. As a result, the force FH which acts on the electron in upward direction 

also increases till it becomes equal to FL. Thus, at equilibrium, 

                         𝐹𝐿 = 𝐹𝐻 

     i.e.−𝐵𝑒𝑣 = −𝑒𝐸𝐻     since    𝐹𝐋 = 𝑒𝑣𝐵 

                 ⇒ 𝐸𝐻 = 𝐵𝑣 → (3) 

Using the relation, 𝐼 = 𝑛𝐴𝑒𝑣, 

The current through the semiconductor 𝐼 = 𝑛𝐴𝑒𝑣 

     𝑣 = 𝐼
𝐴𝑛𝑒

 

Substituting for v, in equation (3) we get 

    𝐸𝐻 = 𝐵
𝐼

𝑤𝑑𝑛𝑒
 ------ (4)  since A = wd 

The Hall voltage, 𝑉𝐻 = 𝐸𝐻𝑑 =
𝐵𝐼𝑑

𝑤𝑑𝑛𝑒
=

𝐵𝐼

𝑤𝑛𝑒
 -------- (5) 

where n is charge carrier concentration. 

𝑉𝐻 =
𝐵𝐼

𝜌𝑐ℎ𝑤
 

Where 𝛒𝐜𝐡 = 𝐧𝐞, is the charge density which is a constant for a given material.  
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Hence   𝑉𝐻 =
𝑅𝐻𝐵𝐼

𝑤
 

where RH is a constant called Hall coefficient,  𝑅𝐻 =
1

𝜌𝑐ℎ
=

1

𝑛𝑒
 

Thus by measuring VH, I & w and by knowing B, the charge density ρch can be determined using 

which Hall coefficient can be evaluated. 

 

Importance of Hall Effect: 

The importance of Hall Effect in the field of semiconductor is that it helps to determine 

1) The type of semiconductor. 

2) The sign of majority charge carriers. 

3) The majority charge carrier concentration. 

4) The mobility of majority charge carriers. 

5) The mean drift velocity of majority charge carriers. 
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Dielectric Properties 
Dielectrics  

A dielectric is an electrically non-conducing material which provides electrical insulation 

between two media (conductors) which are at different potentials, and also serves as an electrical charge 

storage aid under certain circumstances. 

E.g.: glass, porcelain, wood, rubber or waxed paper. 

 

Electric dipole: 

Electric dipole is a pair of equal and opposite charges, +q and −q separated by a very small distance 

    Examples of electric dipole: - Dipoles are common in nature. Molecules like 𝐻2𝑂, HCl, C𝐻3COOH are 

electric dipoles and have permanent dipole moments. 

    Dipole moment:  

A dipole moment is the product of the magnitude of the charge and the distance between the centres 

of the positive and negative charges in a system. It is denoted by  

µ = 𝑞𝑟  

 

 

Units: C-m or Debye, 

 

  Polar and non-polar dielectric materials 

Polar dielectric non-polar dielectric 

In polar material, the effective centers of the 

negative and positive charges in the molecules 

do not coincide with each other even in the 

absence of any external field 

In non-polar materials, the effective center of 

the negative charge distribution coincides with 

the effective center of the positive charges 

Eg : 𝐻2𝑂, HCl, CO Eg : 𝑂2, 𝐻2, 𝑁2 
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Polarization in dielectrics   

      The Process of formation of dipoles or alignment of already existing dipoles on the application of an 

electric field on the dielectric material is called polarization.   

 

 (i)  Polarization in the case of non-polar dielectric: 

Consider a rectangular slab of a non-polar dielectric material. Let the slab be placed between two 

electrodes A & B, between which a uniform electric field E is set up.  

Under the influence of the electric field, the positive and negative charges of the various molecules 

in it experience pulling forces in opposite directions. As a result, the effective centers of positive and 

negative charges get separated till the restoring forces balance the forces due to the applied field. Due to 

the separation between the two charge centers, each molecule develops a dipole moment in the direction 

of the electric field. Such dipoles are produced throughout the solid.  

 

 

 Now, inside the body of the dielectric slab, though the polarization charges appear in every molecule, 

opposite charges in the neighboring molecules neutralize each other. This kind of cancellation takes place 

throughout the body of the material since there are equal amount of negative and positive charges. 

However, the charges which are at the end surfaces of the slab do not find the opposite kind of charges 

for cancellation as is evident from the figure. Thus the effect of the applied field is to cause the appearance 

of net opposing charges at the end faces of the slab. 

(ii) Case of polar dielectric:  

In the case of a polar dielectric material, there are permanent dipoles oriented randomly. Under 

the influence of the applied electric field, the molecular dipoles experience a torque which tends to align 

their dipole moments along the direction of the field. This tendency is opposed by the thermal agitation 

inside the material. Between these two opposing events, some alignment is achieved under sufficiently 
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strong fields. Once the alignment is established, the surface charges appear at the ends of the slab in a 

way similar to the case of non-polar dielectric materials.  

Types of polarization processes 

There are three different mechanisms through which electrical polarization can occur in dielectric 

materials when they are subjected to an external electric field. Accordingly there are three main types of 

polarizations. 

They are,  

1) Electronic polarization, 

2) Ionic polarization  

3) Orientational polarization 

1. Electronic polarization: 

The electronic polarization occurs due to displacement of the positive and negative charges in a dielectric 

material owing to the application of an external electric field. The separation created between the charges 

leads to development of a dipole moment. This process occurs throughout the material. Thus the material 

as a whole will be polarized. 

 

The electronic polarizability, αe for a rare gas atom is given by,  

𝛼𝑒 =
𝜀0(𝜀𝑟−1)

𝑁
; where N is the number of atoms/unit volume. 

2. Ionic Polarization:  

Ionic polarization occurs only in those dielectric materials which possess ionic bonds such as in NaCl. 

When ionic solids are subjected to an external electric field, the adjacent ions of opposite sign undergo 

displacement. The displacement causes an increase or decrease in the distance of separation between the 

atoms depending upon the location of the ion pair in the lattice.  
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This results in a net dipole moment due to the shifting of electron clouds relative to the nuclei.  

3. Orientational Polarization:  

Orientational polarization occurs in those dielectric materials which possess molecules with 

permanent dipole moment (i.e., in polar dielectrics). The orientation of these molecules will be random 

normally due to thermal agitation. Because of randomness in orientation, the material has net zero dipole 

moment. But under the influence of an applied electric field, each of the dipoles undergo rotation so as to 

reorient along the direction of the field because of which, the overall cancellation of dipole moments due 

to randomness does not hold good any more (Fig. 7). Thus the material itself develops electrical 

polarization.  

 

The orientational polarization is strongly temperature dependent and decreases with increase of 

temperature.  

Internal field: 
What is internal field? Write an expression for the internal field in case of solid and liquid dielectrics?  

"The internal field, or the local field, is the electric field that acts at the site of any given atom of a solid 

or a liquid dielectric subjected to an external electric field. It is defined as “the resultant of the applied 

field and the field due to all the surrounding dipoles".  

Consider a dielectric material either solid or liquid kept in an external uniform electric field of 

strength E. In the material let us consider an array of equidistant atomic dipoles arranged parallel to the 

direction of the field as shown in fig.  
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Let the interatomic distance be ‘d’ and dipole moment of each of atomic dipole be μ. Then the internal 

field at the site of an atom is given by  

                                                𝐸𝑖 = 𝐸 +
1.2𝜇

𝜋𝜀0𝑑3 

If αe is the electronic polarizability of the atoms, we can write, 

                                                           𝜇 = 𝛼𝑒𝐸𝑖    

                                        Hence,  𝐸𝑖 = 𝐸 +
1.2𝛼𝑒𝐸𝑖

𝜋𝜀0𝑑3  

Or 

𝐸𝑖 =
𝐸

1 −
1.2𝛼𝑒

𝜋𝜀0𝑑3

 

 

In 3-dimensional cases, the general equation for internal field is expressed as,  

𝐸𝑖 = 𝐸 +
𝛾𝑃

𝜀0
 

where, P is the dipole moment/unit volume for the material, and γ is the proportionality constant 

called internal field constant.  

 In the 3-dimensional case, if it is cubic lattice, then it can be shown that γ = 1/3 in which event, the 

internal field is named Lorentz field given by,  

 

𝐸𝐿𝑜𝑟𝑒𝑛𝑡𝑧 = 𝐸 +
𝑃

3𝜀0
 

Above equation is known as Lorentz relation. 

 

Clausius – Mossotti relation  

Consider an elemental solid dielectric material of dielectric constant 𝜀𝑟  

If N is the number of atoms/unit volume of the material, μ is the atomic dipole moment, then we 

have,  

Dipole moment/unit volume = 𝑁𝜇  ---------------------- (1) 
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Here the field experienced by the atoms is the internal field Ei.  Hence, if αe is the electronic 

polarizability of the atoms, we can write the equation for μ as, 

𝜇 = 𝛼𝑒𝐸𝑖   ---- (2) 

 Therefore, dipole moment/unit volume =𝑁𝛼𝑒𝐸𝑖 --------------------------- (3) 

But dipole moment/ unit volume is Polarization P  

Therefore     𝑃 = 𝑁𝛼𝑒𝐸𝑖 -------------------- (4) 

Or   𝐸𝑖 =
𝑃

𝑁𝛼𝑒
 -------------------- (5)  

But             𝑃 = 𝜀0(𝜀𝑟 − 1)𝐸 

Or   𝐸 =
𝑃

𝜀0(𝜀𝑟−1)
 ---------------- (6) 

For 3-D lattice, internal field is given by  

𝐸𝑖 = 𝐸 +
𝛾𝑃

𝜀0
 

Substituting for Ei and E from Eqs(5) and (6) we have 

𝑃

𝑁𝛼𝑒
=

𝑃

𝜀0(𝜀𝑟−1)
+

𝛾𝑃

𝜀0
 ------------- (7)  

Considering the internal field in the material to be Lorentz field, we have γ= 1/3   

1

𝑁𝛼𝑒
=

1

𝜀0(𝜀𝑟 − 1)
+

1

3𝜀0
 

     
1

𝑁𝛼𝑒
=

3+(𝜀𝑟−1)

3𝜀0(𝜀𝑟−1)
 

     
3𝜀0

𝑁𝛼0
=

𝜀𝑟+2

𝜀𝑟−1
 

By rearranging we have, 
𝑁𝛼𝑒

3𝜀0
=

𝜀𝑟−1

𝜀𝑟+2
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Numericals: 
 

1. Calculate the probability of an electron occupying an energy level 0.04 eV above the Fermi level at 

400 K in a material. 
Solution: 

Given, T = 400K,  

To find f(E) = ? 

Above the Fermi Level, 𝐸 − 𝐸𝐹 = 0.04𝑒𝑉 

We have 

1

1
)(

+

=
−

kT

EE F

e

Ef

 

𝑓(𝐸) =
1

1 + 𝑒
0.04×1.6×10−19

1.38×10−23×400

 

 

=𝟎. 𝟐𝟑𝟖 

 

             2.       Calculate the Fermi velocity and mean free path for conduction electrons in Al, given that its Fermi 

energy is 11.63 eV and relaxation time for free electrons is 7.3 × 10−15𝑠. 

Solution: 

Given: 𝐸𝐹 = 11.63 𝑒𝑉,  𝜏 =  7.3 × 10−15𝑠 

To find; 𝑣𝐹 =? 𝜆𝐹 =? 

We have                            𝐸𝐹 =
𝑚𝑣𝐹

2

2
 

                    𝑣𝐹 = √
2𝐸𝐹

𝑚
 

𝑣𝐹 = √
2 × 11.63 × 1.6 × 10−19

9.1 × 10−31
 

=𝟐. 𝟎𝟐𝟐 × 𝟏𝟎𝟔𝒎/𝒔 

 

3.       Find the temperature at which there is 1% probability that a state with energy 0.5 eV above Fermi 

energy is occupied. 

Solution: 

Given: f(E) = 1% =  
1

100
  

Above the Fermi Level, 𝐸 − 𝐸𝐹 = 0.5 𝑒𝑉 

To find, T =? 

We have 

1

1
)(

+

=
−

kT

EE F

e

Ef

 
1

100
=

1

1 + 𝑒
0.5×1.6×10−19

1.38×10−23×𝑇

 

𝑻 = 𝟏𝟐𝟔𝟏 𝑲 
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4. The intrinsic carrier density is 1.5 × 1016 m–3. If the mobility of electron and hole are 0.13 and 0.05 

m2 V–1 s–1, calculate the conductivity. 

 

 

5. The Intrinsic carrier density at room temperature in Ge is 2.37 × 1019 m3 if the electron and hole 

mobilities are 0.38 and 0.18 m2 V–1 s–1 respectively, calculate the resistivity. 
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6.The Hall coefficient of certain silicon specimen was found to be –7.35 × 10–5 m3 C–1 from 100 to 400 

K. Determine the nature of the semiconductor. If the conductivity was found to be 200Ω –1 m–1. Calculate 

the density and mobility of the charge carrier. 

 
7. An N-type semiconductor has hall coefficient = 4.16 × 10–4 m3 C–1. The conductivity is 108 –1 m–1. 

Calculate its charge carrier density ‘ne’and electron mobility at room temperature. 
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8.   A semiconducting crystal with 12 mm long, 5 mm wide and 1 mm thick has a magnetic density of 0.5 

Wbm–2 applied from front to back perpendicular to largest faces. When a current of 20 mA flows length 

wise through the specimen, the voltage measured across its width is found to be 37μV . What is the Hall 

coefficient of this semiconductor? 

 
 

9.    The Electronic polarizability of Krypton gas is 3.54 × 10−40𝐹𝑚2. If the gas contains 

2.7 ×
1025𝑎𝑡𝑜𝑚𝑠

𝑚3   at   NTP calculate the dielectric constant of Krypton. 

Solution: 

Given:  

Electronic polarizability 𝛼𝑒 = 3.54 × 10−40𝐹𝑚2 

Number of atoms per unit volume, 𝑁 = 2.7 × 1025𝑎𝑡𝑜𝑚𝑠/𝑚3 

Dielectric constant, 𝜀𝑟 = 𝐾=? 

We have 

( )
N

r
e

10 −
=




 Substituting the given values, 

 
3.54 × 10−40 =

8.854×10−12(𝜀𝑟−1)

2.7×1025
 

Simplifying, we get 

𝛆𝐫 = 𝟏. 𝟎𝟎𝟏𝟎𝟖 

 

10. An elemental solid dielectric material has polarizability 7 × 10−40𝐹𝑚2. Assuming the internal field to 

be Lorentz field, calculate the dielectric constant for the material if the material has 3 × 1028𝑎𝑡𝑜𝑚𝑠/𝑚3. 

Solution: 

Electronic polarizability 𝛼𝑒 = 7 × 10−40𝐹𝑚2 

Number of atoms per unit volume, 𝑁 = 3 × 1028𝑎𝑡𝑜𝑚𝑠/𝑚3 

Dielectric constant, 𝜀𝑟 =? 
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Since, the internal field is Lorentz field we can apply Clausius - Mossotti equation given by  

2

1

3 0 +

−
=

r

reN









 
3×1028×7×10−40

3×8.854×10−12 =
𝜀𝑟−1

𝜀𝑟+2
  

𝜺𝒓=12.33 

 
11. Find the polarization produced in a dielectric medium of relative permittivity 15 in the presence of an 

electric field of 500 V/m. 

Solution: 

Given:  

Relative permittivity = Dielectric constant, 𝜀𝑟 =15 

Electric field, E = 500 V/m 

  Polarization, P = ? 

We have,  

    

( )EP r 10 −= 

 Substituting we get, 

𝑃 = 8.854 × 10−12 × (15 − 1)500 

 

P= 𝟔. 𝟏𝟗𝟕𝟖 × 𝟏𝟎−𝟖𝑪/𝒎−𝟐 
 

 


