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Module 4  

Digital Electronics 

 

Syllabus 

Number Systems: Introduction, Number systems, Data representation, Binary arithmetic 

(addition, subtraction using complement form). 

Logic gates & Boolean simplification: Boolean algebra, De-Morgan‟s 

theorems, Logic Gates, Universal gates. 

Combinational Circuits: Half Adder, Full Adder, Multiplexer, Encoders, Decoders. 

Sequential Circuits: Introduction to latches and flip flops. 
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Decimal Binary 

0 0000 

1 0001 

2 0010 

3 0011 

4 0100 

5 0101 

6 0110 

7 0111 

 

Decimal Binary 

8 1000 

9 1001 

10 1010 

11 1011 

12 1100 

13 1101 

14 1110 

15 1111 

 

4. Digital systems 

Digital systems such as computers, smartphones, calculator process information in digital form 

or binary form. Digital systems have only two discrete values, 0s and 1s, unlike analog 

systems which can take a continuous range of values. 

Advantages of digital systems: 

1) Digital signals can convey information with less noise, distortion, and interference. 

2) Digital signal processing is more secure because digital information can be easily encrypted 

and compressed. 

3) Digital systems are more accurate, and the probability of error occurrence can be reduced 

by employing error detection and correction codes, hence reliable. 

4) Digital signals can be easily stored on any magnetic media or optical media using 

semiconductor chips and can be implemented in the form of ICs. 

 

 

4.1.1 Binary numbers 

A decimal number is of base 10. 

Binary numbers are numbers expressed in a base-2 number system and use only 2 symbols: “0” and 

“1”. Each digit is referred to as a bit. 

Eg.(1): Decimal equivalent of 11010 = 

(1 x 2
4
 ) + (1 x 2

3
 ) + (0 x 2

2
 ) + (1 x 2

1
 ) + (0 x 2

0
 ) = 16 + 8 + 2 = 26 

Eg.(2): Decimal equivalent of 11010.11 = 

(1 x 2
4
 ) + (1 x 2

3
 ) + (0 x 2

2
 ) + (1 x 2

1
 ) + (0 x 2

0
 ) + (1 x 2

-1
 ) + (1 x 2

-2
 ) = 26.75 

Decimal numbers 1 to 15 can be represented in 4-bit binary as follows: 
 

 

Hexadecimal systems 

A number system with base (or radix) sixteen is called a hexadecimal number system. In this 

system, 16 symbols are used to represent numbers mainly 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, 

E, and F. 
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4.1.2 Number Base Conversions 

Numbers can be converted from one system to the other in the following ways: 

1) Any number system to decimal 

 

A number expressed in base r can be converted to decimal equivalent by multiplying each 

coefficient with the corresponding power of r and adding. Number is separated into integer part 

and fractional part. 

 

Example: a) Binary to decimal 

Convert (1010.011)2 to decimal. 

(1010.011)2 = (1 x 2
3
) + (0 x 2

2
) + (1 x 2

1
) + (0 x 2

0
) + (0 x 2

-1
) + (1x 2

-2
) + (1 x 2

-3
) 

= 8 + 2 + 0.25 + 0.125 

= (10. 375)10 

 

 

2) Hexadecimal to binary or vice versa 

As 2
4
 = 16, each hexadecimal digit corresponds to four binary digits. Conversion from 

binary to hexadecimal is done by partitioning binary numbers into groups of four bits 

starting from the binary point and proceeding to left or right. 

Example: 

 

1) Convert (10110001101011. 11110010)2 to hexadecimal. 

 

(10 1100 0110 1011. 1111 0010)2 = (2C6B. F2)16 

2) (306. D) 16 = ( 0011 0000 0110. 1101)2 

 

 

3) Decimal to any other system 

 
i) Decimal to binary 

Convert (13)10 to binary. 

To convert to binary, divide by 2. 

 

13 / 2, Q = 6, R = 1 

6 / 2, Q = 3, R = 0 

3 / 2, Q = 1, R = 1 

1/ 2, Q = 0, R = 1 
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Stop when Q = 0. 

 

So binary representation is 1101. 

 

To convert the fractional part of decimal to binary, multiply by 2 and take the integer 

part alone. 

 

Example: Convert (0. 65625) 10 to binary. 

 

0. 65625 x 2 = 1.31250 

0. 3125 x 2 = 0.6250 

0. 625 x 2 = 1.2500 

0. 25 x 2 = 0. 5000 

0. 5 x 2 = 1. 0000 

Now it can be stopped. The binary representation is (0.10101)2 

 

Complements 

Complements are used in digital computers to simplify subtraction operations and for logical 

manipulation. There are two types of complements for each base-r system: 

1) radix complement or r‟s complement 

2) diminished radix complements or (r-1)‟s complement 

 

For binary numbers, it is 2‟s complement and 1‟s complement. For decimal numbers, 

it is 10‟s complement and 9‟s complement. 

 

Given a number N in base r having n digits, 

r’s complement of N is defined as rn – N. 

 

(r-1)’s complement of N is defined as (rn – 1) – N. 

 

For example, consider a decimal system with base 10. 

 

To find 10‟s complement of 7 

N = 7, no. of digits n = 1 (7 is single digit no), r is base = 10 

10‟s complement = r
n
 – N = 10

1
 - 7 = 10 – 7 = 3 

10‟s complement of 9 = 10
1
 – 9 = 1 
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10‟s complement of 5690 = 10
4
 – 5690 = 4310 

 
To find 9‟s complement of 546700, 

(r
n
 – 1) – N = 10

6
 – 1 – 546700 = 453299 

 

 

For binary numbers, r =2 and r-1 =1 

It can be seen that 1‟s complement of binary number is formed by changing 1‟s to 0‟s and 0‟s 

to 1‟s. 

2‟s complement of 1101 = 2
4
 – 1101 = (16) 10 – 1101 = 10000 – 1101 = 0011 

It can be seen that 2‟s complement of binary number is formed by adding 1 to 1‟s 

complement. 

In binary subtraction, subtracting B from A is equivalent to adding A to 2‟s complement of B. 

If the final carry is generated, then the result is positive, final carry is neglected. If the final 

carry is not produced, the result is negative. In that case, take its 2‟s complement to get the final 

result. 

4.2 Boolean Algebra 

Boolean algebra is a branch of mathematics that deals with operations on logical values with 

binary variables. The Boolean variables are represented as binary numbers to represent truths: 

1 = true and 0 = false. 

Basic definitions: 

 

 Boolean algebra 

 

It is a set of elements, a set of operators, and many unproved axioms or postulates. 

 

 Set of elements is any collection of objects, usually having a common property. 

 

Example: A = {1, 2, 3, 4} indicates that set A has the elements of 1, 2, 3, and 4. 

 A binary operator defined on a set S of elements is a rule that assigns, to each 

pair of elements from S, a unique element from S. 

The most common postulates used to formulate various algebraic structures are: 

1. Closure. 

 

A set S is closed with respect to a binary operator if, for every pair of elements of S, the 

binary operator specifies a rule for obtaining a unique element of S. 
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2. Associative law. 

 

A binary operator * on a set S is said to be associative whenever (x * y) * z = x * (y * z) 

for all x, y, z € S. 

3. Commutative law. A binary operator * on a set S is said to be commutative whenever 

x * y = y * x for all x, y € S 

4. Identity element. A set S is said to have an identity element with respect to a binary 

operation * on S if there exists an element e € S with the property that 

e * x = x * e = x for every x € S 

 

Example: The element 0 is an identity element with respect to the binary operator + on 

the set of integers I = {c, -3, -2, -1, 0, 1, 2, 3, c}, since x + 0 = 0+ x = x for any x € I 

The set of natural numbers, N, has no identity element, since 0 is excluded from the set. 

 

5. Inverse. A set S having the identity element e with respect to a binary operator * is 

said to have an inverse whenever, for every x € S, there exists an element y € S such 

that x * y = e 

Example: In the set of integers, I, and the operator +, with e = 0, the inverse of an 

element a is (-a), since a + (-a) = 0. 

6. Distributive law. If * and • are two binary operators on a set S, * is said to be 

distributive over • whenever x * (y • z) = (x * y) • (x * z). 

Field: 

A field is an example of an algebraic structure. 

• The field of real numbers is the basis for arithmetic and ordinary algebra. 

– The binary operator + defines addition. 

– The additive identity is 0. 

– The additive inverse defines subtraction. 

– The binary operator • defines multiplication. 

– The multiplicative identity is 1. 

– For a ≠ 0, the multiplicative inverse of a = 1/a defines division (i.e., a •1/a = 1). 

– The only distributive law applicable is that of • over +: 

a • (b + c) = (a • b) + (a • c) 
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Axiomatic Definition of Boolean Algebra: 

1854: George Boole developed an algebraic system called Boolean algebra. 

1904: E. V. Huntington formulated a set of postulates that formally define the 

Boolean algebra. 

1938: C. E. Shannon introduced a two-valued Boolean algebra called switching 

algebra that represented the properties of bistable electrical switching circuits. 

Duality property 

All binary operations remain valid when following two steps are performed: 

1) Interchange OR and AND operators. 

2) Replace all 1s by 0s and 0s by 1s. 

 

Huntington postulates: 

1. (a) The structure is closed with respect to the operator +. 

(b) The structure is closed with respect to the operator •. 

2. (a) The element 0 is an identity element with respect to +; that is, x + 0 = 0 + x = x. 

(b) The element 1 is an identity element with respect to •; that is, x • 1 = 1 • x = x. 

3. (a) The structure is commutative with respect to +; that is, x + y = y + x. 

(b) The structure is commutative with respect to • ; that is, x • y = y • x. 

4. (a) The operator • is distributive over +; that is, x • (y + z) = (x • y) + (x • z). 

(b) The operator + is distributive over •; that is, x + (y • z) = (x + y) • (x + z). 

5. For every element x € B, there exists an element x € B (called the complement of x) 

such that (a) x + x‟ = 1 and (b) x • x‟ = 0. 

6. There exist at least two elements x, y € B such that x ≠ y. 

• Comparing Boolean algebra with arithmetic and ordinary algebra 

1. Huntington postulates do not include the associative law. However, this law holds for 

Boolean algebra and can be derived (for both operators) from the other postulates. 

2. The distributive law of + over • (i.e., x + (y • z) = (x + y) • (x + z) ) is valid for Boolean 

algebra, but not for ordinary algebra. 

3. Boolean algebra does not have additive or multiplicative inverses; therefore, there are 

no subtraction or division operations. 

4. Operator called complement is not available in ordinary algebra. 
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A B Y 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

 

A B Y 

0 0 0 

0 1 1 

1 0 1 

1 1 1 

 

5. Ordinary algebra deals with the real numbers, which constitute an infinite set of 

elements. Boolean algebra is defined as a set with only two elements 0 and 1. 

Two-valued Boolean Algebra 

Two valued Boolean algebra is a set of two elements with operations: 

+ : OR operation; ‧ : AND operation, complement operator: NOT operation 

Example: Binary logic is a two-valued Boolean algebra also called “switching algebra” by engineers 

• B = {0,1} 

• Operations 

AND OR 
 

 

NOT 
 

A Y 

0 1 

1 0 

 

 Closure: the result of each operation is either 1 or 0 and 1, 0 € B. 

 Identity elements: 0 for + and 1 for ‧ 

 Commutative laws are obvious from truth tables. 

 Distributive laws: 

x‧(y + z) = (x‧y) + (x‧z) 

x+ (y‧z) = (x+y)‧(x+z) 

 

Complement 

x+x'=1: 0+0'=0+1=1; 1+1'=1+0=1 

x‧x'=0: 0‧0'=0‧1=0; 1‧1'=1‧0=0 
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4.2.1 Basic theorems and properties of Boolean Algebra 

 

In Duality, binary operators are interchanged; AND is replaced by OR. Identity elements are 

interchanged; 1 is replaced by 0. 

Postulates of Boolean Algebra: 

 

1a) x + 0 = x 1b) x . 1 = x 

 

2a) x + x‟ = 1 2b) x. x‟ = 0 2c) x + 1 =1 2d) x.0 =0 

 

Commutative: 

 

3a) x + y = y + x 3b) xy = yx 

Distributive: 

4a) x ( y + z) = xy + xz 4b) x + yz = ( x + y). ( x + z) 

Associative: 

5a) x + (y + z) = (x+ y) = z 5b) x (yz) = (xy) z 

 

 

Theorems: 

 

Theorem 1(a):  x + x = x 

 

Proof: 

x+x = (x+x) •1 by postulate 1b 

= (x+x) (x+x') 2a 

= x+xx' 4b 

= x+0 2b 

= x 1a 

 

Theorem 1(b): x • x = x 

 

Proof: 

x • x = x x + 0 by postulate: 1(a) 

= xx + xx' 2(b) 

= x (x + x') 4(a) 

= x • 1 2(a) 

= x 1(b) 

 

 

Theorem 1b) is the dual of theorem 1a) 
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Theorem 2(a): x + 1 = 1 

 

x + 1 = 1 • (x + 1) by postulate: 1(b) 

= (x + x')(x + 1) 2(a) 

= x + x' • 1 4(b) 

= x + x' 1(b) 

= 1 2(a) 

Theorem 2(b): x • 0 = 0 by duality 

Theorem 3: (x')' = x 

Complement of x' is x, so (x')' = x 

 

Theorem 4a: x + xy = x 

x + xy = x • 1 + xy by postulate: 1(b) 

= x (1 +y) 4(a) 

= x • 1 2(c) 

= x 1(b) 

 

Theorem 4(b): x (x + y) = x by duality 

 

From truth table, 

 

x y xy x+xy 

0 0 0 0 

0 1 0 0 

1 0 0 1 

1 1 1 1 

 

 

Theorem 5: DeMorgan’s theorems 

5a: (x + y)’ = x’y’ 

x y x +y (x+y) 

„ 

x‟ y‟ x‟y‟ 

0 0 0 1 1 1 1 

0 1 1 0 1 0 0 

1 0 1 0 0 1 0 

1 1 1 0 0 0 0 

 

Column 4 = Column 7  
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5b: (x y)’ = x’ + y’ 

x y x y (xy) „ x‟ y‟ x‟ + y‟ 

0 0 0 1 1 1 1 

0 1 0 1 1 0 1 

1 0 0 1 0 1 1 

1 1 1 0 0 0 0 

Column 4 = Column 7 

 

Operator precedence for evaluating Boolean expressions is 

 

a) Parenthesis  b) not  c) and d) or 

 

 

 

4.2.2 Boolean functions: 

 

Boolean function is an algebraic expression consisting of binary variables, binary 

operators OR and AND, unary operator NOT and parentheses 

• It expresses the logical relationship between binary variables and is evaluated by 

determining the binary value of the expression for all possible values of the variables. 

• Examples 

1) F1= x + y‟ z 

It means F1 = 1 if x = 1 or if y = 0 and z = 1, otherwise F1 = 0. 

2) F2 = x' y' z + x' y z + x y‟ 

It means F2 = 1 if (x = 0, y = 0, z = 1) or (x = 0, y = 1, z = 1) or (x = 1, y = 0), 

otherwise F2 = 0. 

 

Truth Table 

• Boolean function can be represented in a truth table. 

• Truth table has 2
n
 rows where n is the number of variables in the function. 

• The binary combinations for the truth table are obtained from the binary numbers 

by counting from 0 through 2
n
- 1. 
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Example: Truth table for F1 and F2 can be written as 

 

x y z F1 F2 

0 0 0 0 0 

0 0 1 1 1 

0 1 0 0 0 

0 1 1 0 1 

1 0 0 1 1 

1 0 1 1 1 

1 1 0 1 0 

1 1 1 1 0 

 

Implementation of F1 with logic gates 

 

 
 

 

F1= x + y‟ z 

 

 

F2 can be simplified using the rules of Boolean Algebra. 

F2 = x‟y‟z + x‟yz + xy‟ 

= x‟z(y‟ + y) + xy‟ 

= x‟z + xy‟ 

 

 

Implementation of F2 with logic gates 

 

So Boolean expressions can be simplified using the rules of Boolean Algebra. 

Literal: a complemented or un-complemented variable (an input to a gate). 

Minimization of the number of literals results in a simple circuit with less number of gtes. 
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F2 = x‟y‟z + x‟yz + xy‟ has 3 terms with 8 literals. It can be simplified as: 

F2 = x‟z (y‟ + y) + xy‟ 

= x‟z + xy‟ . 

Now the simplified function has 2 terms and 4 literals only. 

 

Minterm and maxterm: 

Minterm: 

Minterm (standard product): an AND term consisting of all literals in their normal form or in 

their complement form 

• For example, two binary variables x and y, has 4 minterms: xy, xy', x'y, x'y„ 

• n variables can be combined to form 2
n
 minterms. 

Maxterm (standard sum): an OR term consisting of all literals in their normal form or in their 

complement form. 

• Each maxterm is the complement of its corresponding minterm, and vice versa. 
 

 

Any Boolean function can be expressed as sum of products or minterms (SOP form) or product 

of sums or maxterms (POS form). 

SOP is expressed in the form of ∑ m. 

POS is expressed in the form of π M. 

Example: Y 1= A‟B‟C + ABC‟ + ABC is an SOP expression. 

Y = (A+ B+ C). (A‟+B‟+C‟) is a POS expression. 

Conversion between SOP and POS 

Let SOP form be F(A,B,C) = ∑ (1,4,5,6,7) = m1 + m4 + m5 + m6 + m7 

POS form is complement of SOP form. 
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F‟(A,B,C) = π M (0,2,3) = M0. M2. M3 

Canonical and Standard forms 

Canonical form is a method of representing Boolean outputs of digital circuits using Boolean 

Algebra in such a way that each term contains all the literals. 

Standard form is a method of representing Boolean outputs of digital circuits using Boolean 

Algebra in such a way that there exists atleast one term that does not contain all the literals. 

Example: 

Y = A‟B‟C + ABC‟ + AB‟C is in canonical form. 

Y = A + BC is in standard form. 

 

 

Other Logic Operations 

For n binary variables, there can be 2
n
 functions. 

Example for four variables, 16 functions are possible. 

16 functions can be subdivided into various catagories: 

a) Two functions that produce a constant 0 or 1. 

b) Four functions with unary operations: complement and transfer 

c) Ten functions with binary operators that define eight different operations: AND, OR, 

NAND, NOR, XNOR, equivalence, inhibition and implication. 
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 Complement function produces the complement of each binary variable. 

 A function that is equal to the input variable has been given the name transfer. 

 Equivalence is a function that is 1 when both binary variables are equal (XNOR). 

 

4.2.3 Digital Logic Gates 

Single/ dual input logic gates 
 

 
 

 

 

 

Fig 4.1: Gates 
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Multiple input gates 

AND and OR are commutative and associative. 

x + y = y + x and x. y = y . x 

(x + y) + z = x + (y + z) and (x.y).z = x. (y . z) 

So 3 input AND and OR gates are as shown: 

 
 

 

3-input NAND and NOR gate: 

 

 

3-input XOR gate is 

 

 

 

 

 

4.3 Combinational and sequential logic 

Digital logic circuits are classified into two: Combinational and Sequential 

Combinational logic circuits are memoryless logic circuits in which output at any instant of 

time depends only on the present inputs without regard to previous inputs. 

Sequential circuits are circuits with memory, whose outputs depend not only on the present 

combination of inputs but also on past inputs. 

 

 

4.3.1 Combinational logic circuit 

A combinational circuit consists of input variables, logic gates and output variables. 
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Logic gates accept signals from inputs and generate output signals. 

Both input and output data are represented by binary signals. For n input variables, there are 2
n
 

possible combinations of binary input values. For each possible input combination, there is 

only one possible output combination. Each output function is expressed in terms of n input 

variables. 

Each input variable to a combinational circuit may have one or two wires. Variable is 

represented either in normal form (unprimed) or in complemented form (primed). To 

implement primed variables, an inverter is required. 

Design procedure of combinational circuits 

Design procedure involves the following steps: 

1) The problem is stated. 

2) The number of available input variables and required output variables is determined. 

3) The input and output variables are assigned letter symbols. 

4) Truth table that defines the relationship between input and output variables is 

determined. 

5) Simplified Boolean function for each output is obtained. 

6) Logic diagram is drawn. 

 

 

Truth table for a combinational circuit consists of input and output columns. 1s and 0s in 

input columns are obtained from 2
n
 binary combinations available for input variables. 

Output may be either 0 or 1 for every valid input combination. 

Output Boolean functions from truth table are simplified using laws of Boolean Algebra, 

K-map method or tabular method. 

Practically design method will have to consider constraints such as: 

a) Minimum number of gates 

b) Minimum number of inputs to a gate 

c) Minimum propagation time of signal through the circuit. 

d) Minimum number of interconnections 

e) Limitations of driving capabilities of each gate. 

Logic diagram is helpful in visualising gate implementation of expressions. 
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Adders: 

Digital systems like computers perform all arithmetic operations like addition, 

subtraction, multiplication and division. The most basic operation is binary addition. 

 

4.3.2 Half adder 

Half adder is a combinational circuit that performs the addition of two bits and produces sum 

S and carry C as the outputs. 

1) Addition of 0 and 0 produces sum = 0, carry =0. 

2) Addition of 0 and 1 produces sum = 1, carry =0. 

3) Addition of 1 and 1 produces sum = 0, carry =1. 

 

Truth table 

 

A B S C 

0 0 0 0 

0 1 1 0 

1 0 1 0 

1 1 0 1 

 

From truth table, S = A‟B + AB‟ = A xor B 

C = AB 

 

Logic circuit for half adder: 
 

 

 

Fig 4.2 Implementation of half adder 
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4.3.3 Full adder: 

Full adder is a combinational circuit that performs the addition of three bit: A, B and 

Cin and produces sum S and carry Cout as the outputs. 

 

Truth table for Full adder: 

 

A B Cin S Cout 

0 0 0 0 0 

0 0 1 1 0 

0 1 0 1 0 

0 1 1 0 1 

1 0 0 1 0 

1 0 1 0 1 

1 1 0 0 1 

1 1 1 1 1 

 

S  = A‟B‟Cin + A‟BCin‟ + AB‟Cin‟ + ABCin 

     = Cin ( AB + A‟B‟) + Cin‟ ( A‟B + AB‟) 

     = Cin (A xnor B) + Cin‟ (A xor B) 

     = A xor B xor Cin 

Cout = A‟BCin + AB‟Cin + ABCin‟ + ABCin 

        = AB (Cin + Cin‟) + Cin (A xor B) 

        = AB.1 + Cin (A xor B) = AB + Cin ( A xor B) 

 

S = A xor B xor Cin 

Cout = AB + Cin ( A xor B) 

Implementation of Full adder with two half adders and OR gate. 

 

A

 

B 

 

 

 

 

 

 

 

 

Fig 4.3 Implementation of Full Adder 
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4.3.4 Multiplexers 

• Multiplexing means transmitting a large number of information units over a smaller 

number of channels or lines. 

• A digital multiplexer is a combinational circuit that selects binary information from one 

of many input lines and directs it to a single output line. 

• The selection of a particular input line is controlled by a set of selection lines. 

• Normally, there are 2" input lines and n selection lines whose bit combinations 

determine which input is selected. 

• Multiplexers are used in communication systems to increase the efficiency of the 

system. Multiplexers are used in telephone networks for the integration of several audio 

signals on a single transmission line. To maintain large amounts of data, multiplexers 

are also used in computer memory systems. 

• A 4-to-l-line multiplexer. Each of the four input lines, Io to I3 is applied to one input 

of an AND gate. Selection lines SI and So are decoded to select a particular AND gate. 

•  

 
 

Fig 4.4 (a) Multiplexer logic diagram (b) Function table (c) Block diagram 

 

4.3.5 Decoders 

• A decoder is a combinational circuit that converts binary information from n input 

lines to a maximum of 2" unique output lines. 

• If the n-bit decoded information has unused or don't-care combinations, the decoder 

output will have fewer than 2" outputs. 

• The decoders presented here are called n-to-m-line decoders, where m <; 2". 

• Their purpose is to generate the 2" (or fewer) minterms of n input variables. The 



FUNDAMENTALS OF ELECTRONICS ENGINEERING| 23ESCC104 

 

Department of Electronics & Communication Engineering  Page 21  

name decoder is also used in conjunction with some code converters such as a BCD- 

to-seven segment decoder 

• Decoders are used to convert an analog signal into digital data, which can then be 

processed by a computer. 

 

3 to 8 Decoder 

 A 3 to 8 decoder has three inputs (A, B, C) and eight outputs (D0 to D7). 

 Based on the 3 inputs one of the eight outputs is selected. 

 The truth table for 3 to 8 decoder is shown in the below table. 

 From the truth table, it is seen that only one of eight outputs (D0 to D7) is selected 

based on three select inputs. 

 From the truth table, the logic expressions for outputs can be written as follows: 

 

 
 

 Boolean equations for the output can be written as follows 
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Implementation of 3:8 decoder circuit 
 

 

 

Fig 4.5 Implementation of 3:8 Decoder 

 

4.3.6 Encoders 

• An encoder is a digital circuit that performs the inverse operation of a decoder. 

• An encoder has 2" (or fewer) input lines and n output lines. The output lines generate 

the binary code corresponding to the input value. 

• An encoder is a digital circuit that converts a set of binary inputs into a unique binary 

code. 

• The binary code represents the position of the input and is used to identify the specific 

input that is active. 

• Encoders are commonly used in digital systems to convert a parallel set of inputs into 

a serial code. 

Octal to Binary Encoders 

• The basic principle of an encoder is to assign a unique binary code to each possible 

input. For example, a 2-to-4-line encoder has 2 input lines and 4 output lines and assigns 

a unique 4-bit binary code to each of the 2^2 = 4 possible input combinations. 

• The output of an encoder is usually active low, meaning that only one output is active 

(low) at any given time, and the remaining outputs are inactive (high). The active low 

output is selected based on the binary code assigned to the active input. 
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• Truth table of 8:3 Octal to Binary Encoders is written as follows : 
 

 

 

Fig 4.6 Truth table of 8:3 Encoder 

Implementation of 8:3 Octal to Binary Encoders is written as follows 
 

 

 

Fig 4.7 Implementation of 8:3 Encoder 
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Differences between Combinational and Sequential Circuits 
 

Metrics /Parameters Combinational Circuit Sequential Circuit 

Usage of memory or 

Storage area 

It does not require any memory 

element to store the output. 
It requires a memory element 

to store the previous state 

output. 

Feedback It requires no feedback for 

generating the next output 

It requires feedback as it 

relies on the previous 

output/feedback and the 

current input. 

Speed It performs faster in comparison 

with sequential circuits. 
Its performance is slow 

because it uses memory 

elements. 

Elementary blocks It uses logic gates as an elementary 

block. 

It uses flipflops as 

elementary blocks. 

Complexity It is easy to use and handle It is complex to use and 

handle in comparison to 

combinational circuits. 
Example Encoder ,Decoder, Multiplexer Flip-flops and Counters. 

 

 

4.4 Sequential Circuits 

 
 

Fig 4.8 Block diagram of sequential circuits 

Types of Sequential Circuits 

• Asynchronous sequential circuits: They do not use the clock signals instead they 

make use of the pulses. The un-clocked flip-flops are the memory elements of 

asynchronous circuits. Though many differences between combinational and sequential 

circuits the asynchronous sequential circuits are similar to combinational circuits along 

with feedback. 

• Synchronous Sequential circuits: They make use of clock signals and synchronize the 

memory element‟s states with the clock signals. The output is stored in the memory 

elements called latches or flip-flops (Bi-stable multivibrator). 
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Differences between Flip-flop and Latch 
 

 
 

 

 

4.4.1 SR flipflop Using NAND gates 

The NAND gate SR flip flop is a basic flip flop which provides feedback from both of its 

outputs back to its opposing input. This circuit is used to store the single data bit in the memory 

circuit. So, the SR flip flop has a total of three inputs, i.e., 'S' and 'R', and current output 'Q'. 

 

 

Fig 4.9 Logic diagram of SR flipflop using NAND gates 
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Note: If any one of the inputs is zero in NAND gate the output will be equal to one. 

Case 1): when S=0 and R=0 

• Input to first NAND gate is {0,Q‟} then the output Q=1 

• Input to second NAND Gate is {Q,0} ={1,0} then the output Q‟=1 

Here Q=Q‟=1; Q and Q‟ Should be complement of each other, hence S=0 and R=0 is a Invalid 

state. 

Case 2): When S=0 and R=1 

• Input to first NAND gate is {0,Q‟} then the output Q=1 

• Input to second NAND gate is {Q,1} = {1,1} then the output Q‟ = 0 

Here Q=1 and Q‟=0 ; Q and Q‟ should be complement of each other , hence 

S= 0 and R=1 gives the output as Q=1 

Case 3): When S=1 and R=0 

• Input to second NAND gate is {Q,0} then the output Q‟=1 

• Input to first NAND gate is {1,Q‟} = {1,1} then the output Q = 0 

Here Q=0 and Q‟=1 ; Q and Q‟ should be complement of each other , hence 

S= 1 and R=0 gives the output as Q=0. 

Case 4): when S=1 and R=1 

The output of SR latch cannot be predicted 

Therefore 

1. Assume Q=1 and Q’=0 

• Input To First NAND gate {1,Q‟} = {1,0} , then the output Q=1 

• Input to second NAND gate {Q,1} = {1,1} , then the output Q‟=0 

2. Assume Q=0 and Q’=1 

• Input to first NAND gate {1,Q‟}={1,1} , then the output Q=0 

• Input to second NAND gate {Q,1} = {0,1} , then the output Q‟=1 

In both the cases predicted Q and Q‟ value is Equal to the Output Value of Q and Q‟ . 

Therefore, when R=1 and S=1 there will be No change in State.  
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SR – Latch (Flip Flop Using NOR gate ): 

 

 

Fig 4.10 Logic diagram of SR flipflop using NOR gates 

 

Note: If any one of the inputs is one in the NOR gate the output will be equal to zero. 

Case 1): when S=0 and R=0 

The output of SR latch cannot be predicted 

Therefore 

1) Assume Q=1 and Q‟=0 

• Input To First NOR gate {0,Q‟} = {0,0} , then the output Q=1 

• Input to second NOR gate {Q,0} = {1,0} , then the output Q‟=0 

2) Assume Q=0 and Q‟=1 

• Input to first NOR gate {0,Q‟}={0,1} , then the output Q=0 

• Input to second NOR gate {Q,0} = {0,0} , then the output Q‟=1 

In both cases predicted Q and Q’ value is Equal to the Output Value of 

Q and Q’ . Therefore, when R=0 and S=0 there will be No change in State. 

 

 

Case 2): When R=1 and S=0 

• Input to first NOR gate is {1, Q‟} then the output Q=0 

• Input to second NOR gate is {Q,1} = {1,1} then the output Q‟ = 1 

Here Q=0 and Q’=1; Q and Q’ should be the complement of each other, hence S= 0 and 

R=1 give the output as Q=0 

 

 

Case 3): When R=0 and S=1 

• Input to second NOR gate is {Q,1} then the output Q‟=0 

• Input to first NOR gate is {1,Q‟} = {1,0} then the output Q = 1 
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Here Q=0 and Q’=1 ; Q and Q’ should be complement of each other , hence 

S= 1 and R=0 gives the output as Q=1. 

Case 4): when S=1 and R=1 

• Input to first NOR gate is {1,Q‟} then the output Q=0 

• Input to second NOR Gate is {Q,1} ={0,1} then the output Q‟=0 

Here Q=Q‟=0; Q and Q‟ Should be complement of each other , hence S=1 and 

R=1 is a Invalid state. 

 

RS FLIPFLOP WITH CLOCK PULSE 

 

 

Fig 4.11 Logic diagram of RS flipflop with clock pulse 
 

 

4.4.2 D flipflop 
 

 

 

Fig 4.12 Logic diagram of D flipflop with clock pulse 
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• One way to eliminate the undesirable condition of the indeterminate state in the RS 

flipflop is to ensure that inputs S and R are never equal to I at the same time. This is 

done in the D flip-flop. 

• The D input goes directly to the S input and its complement is applied to the R input. 

As long as the pulse input is at 0, the outputs of gates 3 and 4 are at the I level and the 

circuit cannot change state regardless of the value of D. 

• The D input is sampled when CP = I. If D is I, the Q output goes to I, placing the circuit 

in the set state. If D is 0, output Q goes to 0 and the circuit switches to the clear state. 

• The D flip-flop receives the designation from its ability to hold data in its internal 

storage. This type of flip-flop is sometimes called a gated D-latch. The CP input is often 

given the designation G (for gate) to indicate that this input enables the gated latch to 

make possible data entry into the circuit. 

• The binary information present at the data input of the D flip-flop is transferred to the 

Q output when the CP input is enabled. The output follows the data input as long as the 

pulse remains in its 1 state. 

• When the pulse goes to 0, the binary information that was present at the data input at 

the time the pulse transition occurred is retained at the Q output until the pulse input is 

enabled again. 

• The basic application of an FF is to store the data. Then it may be used to design 

registers for storing multi-bit data. This includes SISO (Serial in Serial Output), SIPO, 

PISO, PIPO, bidirectional shift registers, and universal shift registers. 
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