

MANGALORE INSTITUTE OF TECHNOLOGY & ENGINEERING

(A Unit of Rajalaxmi Education Trust®, Mangalore) Autonomous Institute affiliated to VTU, Belagavi, Approved by AICTE, New Delhi Accredited by NAAC with A+ Grade & ISO 9001:2015 Certified Institution

Model Question Paper

Fourth Semester BE Degree Examination

Design and Analysis of Algorithms

Time: 3 Hours Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.
2. M: Marks, L: RBT (Revised Bloom's Taxonomy) level, C: Course outcomes.

Module -1					
	a.	Explain the need for algorithm efficiency. Compute the Best-case, Worst-case, and	09	L3	CO1
		Average-case time complexity of sequentially searching the array of numbers			
	b.	{20, 10, 15, 5, 25} Compute the time complexity of the code segment given below:	04	L3	CO1
	υ.	main ()	04	LS	COI
		{			
		$for(i=1; i \le n; i++)$			
01		{ 			
Q1		for(j=1; j<=n; j=2*j)			
		x = y+z;			
		}			
		}			
		Cive the definition & methametical representation of Dia Oh (O) notation and test	07	L3	CO1
	c.	Give the definition & mathematical representation of Big Oh (O) notation and test if $f(n) = O(g(n))$ when $f(n) = n+20$ and $g(n) = n$.	07	L3	COI
		Compute the Omega (Ω) notation of $f(n) = 7n^3 + 5n^2 + 2n + 4$.			
		OR			
	a.	Draw a flowchart depicting the fundamental stages of problem solving and briefly	09	L3	CO1
		explain the stages. Compute the time complexity of the code segment given below			
		main ()			
		{			
		k=2;			
		while (k<=n)			
Q2		k = k * k;			
22		}			
		}			
	b.	Consider three algorithms X, Y and Z. Their respective run-time complexity is	04	L3	CO1
		given as follows: $T_X = 5n$, $T_Y = 5log_{10} n$, and $T_Z = n^2$. Compute the rates of growth of each algorithm when the input is scaled from n=10 to n=1000 and state which			
		of the three algorithms is better looking at their rates of growth.			
	c.	Give the definition and mathematical representation of Big Omega (Ω) notation.	07	L3	CO1
		Let $f(n) = n$ and $g(n) = n^2$. Test if $f(n) = \Omega(g(n))$.			

	231CPC20							
	Consider that $t(n) = (2x^3 + 13 \log_2 x) / 7n^2$ for an algorithm A. Prove that $t(n)$ of algorithm A is $O(n)$.							
	Module- 2							
a.	Develop the recurrence relation for the following function void DAA(int n) {	05	L3	CO2				
	if(n>0) { printf("%d", n); DAA(n-1);							
	DAA(n-1); } }							
	Solve the recurrence relation for the above function using backward substitution method.							
b.	Consider the following recurrence $T(n) = \{ 1, n = 0 \\ T(n-1) + n, n > 0 $ Using the recurrence-tree method, determine the final asymptotic complexity of the tree.	08	L3	CO2				
	Compute time complexity of Bubble sort algorithm. Use Bubble sort algorithm to sort the array of numbers {55, 16, 33, 44, 25}							
c.	In the algorithm of sorting by Merge sort, write the formal algorithm for the merge step. Use Merge sort to sort the array of numbers {15, 6, 5, 17, 22, 8, 12, 21}. Write the recurrence equation of Merge sort and use it to find the time complexity of Merge sort by Master Theorem.	07	L3	CO2				
	OR							
a.	Develop the recurrence relation for the following function	05	L3	CO2				
	Void DAA (int n) {							
	{							
	}							
1	method.	00	1.0	CCC				
b.	Solve the following recurrence relations using master theorem a)T(n)=2T(n/2)+1 b)T(n)=4T(n/2)+n ² c)T(n)=2T(n/2)+n ² logn d)T(n)=2T(n/2)+n/logn	08	L3	CO2				
	b.	Consider that t(n) = (2x³ + 13 log₂ x) / 7n² for an algorithm A. Prove that t(n) of algorithm A is O(n). Module 2	Consider that t(n) = (2x³ + 13 log₂ x) / 7n² for an algorithm A. Prove that t(n) of algorithm A is O(n). Module-2	Consider that $t(n) = (2x^3 + 13 \log_2 x) / 7n^2$ for an algorithm A. Prove that $t(n)$ of algorithm A is $O(n)$. Module- 2 a. Develop the recurrence relation for the following function void DAA(int n) { if (n>0} { printft"%d", n); DAA(n-1); DAA(n-1); DAA(n-1); DAA(n-1); } } } Solve the recurrence relation for the above function using backward substitution method. b. Consider the following recurrence $T(n) = \{1, n=0\} \}$ Using the recurrence-tree method, determine the final asymptotic complexity of the tree. Compute time complexity of Bubble sort algorithm. Use Bubble sort algorithm to sort the array of numbers $\{55, 16, 33, 44, 25\}$ c. In the algorithm of sorting by Merge sort, write the formal algorithm for the merge step. Use Merge sort to sort the array of numbers $\{15, 6, 5, 17, 22, 8, 12, 21\}$. Write the recurrence equation of Merge sort and use it to find the time complexity of Merge sort by Master Theorem. OR a. Develop the recurrence relation for the following function $T(n) = T(n) $				

								431	\mathbf{c}		,
		Compute time complexity of Selection Sort algorithm. Use Selection sort									
		algorithm to sort the array of numbers {72, 23, 33, 36, 21} c. In the algorithm of sorting by Quick sort, write the formal algorithm for Hoare									
	c.	_	_					_	07	L3	CO2
								5, 6, 27}. Write the			
		_	_			o find th	e Best-c	case time complexity			
	of Quick sort by Master Theorem. Module - 3										
	a.		_					its Best-case, Worst-	09	L3	CO3
						e Insertic	on sort	algorithm to sort the			
		array of numbers {75, 35, 45, 10, 20, 50}.									
	b.	Consider the jobs a	_				the option	mal set of jobs that	07	L3	CO3
		can be scheduled so	o that the	profit	is maximiz	zed.					
			_			T =	1				
				Job	Deadline	Profit					
				1	2	70					
				2	1	12					
				3	2	18					
				4	1	35					
			<u>L</u>				l				
		Construct the Huff all symbols.	man tree	for th	e following	data and	l obtain	Huffman Code for			
Q5		Symbol	A	В	С	D	Е				
		Frequency	21	11	12	17	39				
_	c.	 Make use of Prim's algorithm to find the minimum cost spanning tree for the 									CO3
		given graph starting from vertex 'A'.									
		(A) (D)									
			4		(c)—4)				
					\sim						
			لم	2	2	√ 3					
			(E	3)	(F)					
					OR					1	
	a.		_		•			mpute its Best-case,	09	L3	CO3
Q6								Search algorithm to			
		search the numbers	30 and 1	3 in t	he array of	numbers	{4, 12,	16, 25, 27, 30, 33}.			

		2310		∪⊿ر	/						
	b.	Let there be a knapsack with capacity W=35. Let there be three items whose profit	07	L3	CO3						
		and weight are given in the table. Find the optimal order for loading the items in									
		the given knapsack.									
		Items Weight Profit									
		1 18 54									
		2 19 38									
		3 15 60									
		Assume that there are 3 programs L1, L2 & L3 whose lengths are 5, 10 and 3 respectively. Find the optimal order of storing these programs on a tape using brute force approach.									
	c.	Make use of Dijkstra's algorithm to find the shortest path from <i>source vertex 'A'</i> to all other vertices.	04	L3	CO3						
		A B 3 C 6 E 7 D									
I I		Module - 4									
	a.	Write the formal algorithm of heap sort and describe its complexity analysis. Sort	07	L3	CO4						
	the array of numbers {7, 5, 2, 8, 1, 3, 4} in ascending order using Heap Sort by										
		constructing an appropriate Heap tree for this purpose.									
	b.	Find the shortest path between all pairs of vertices for the given graph using the	07	L3	CO4						
		Floyd-Warshall algorithm and describe its complexity analysis.									
		1 8									
Q7											
		9 2 1									
	c.	Find all sum of subsets for $n=4$, $(w1, w2, w3, w4) = (11, 13, 24, 7)$ and $M=31$.	06	L3	CO4						
	C.	Construct the state space tree of the solution.	00	LS	CO4						
		OR									
		Solve the Travelling Salesperson Problem (TSP) using Dynamic Programming for	07	L3	CO4						
	a.	the given graph with source as A and describe its complexity analysis.	U/	LS	CO4						
		the given graph with source as it and describe its complexity analysis.									
		80									
		A									
00		30									
Q8		40 20									
		90									
		40/									
		10									

		23ICP0								
	b.	Compute the single source shortest path for the graph from source vertex A using	07	L3	CO4					
		the Bellman Ford Algorithm and describe its complexity analysis.								
		$\frac{-1}{\sqrt{p}}$								
		(A) (B)								
		$4 \qquad 3 \qquad 1 \qquad 2 \qquad E$								
		-3								
		$(C) \leftarrow (D)$								
	c.	Make use of this solution of the 4-Queen's problem to construct the state space	06	L3	CO4					
		tree leading up to this solution.								
		Q1								
		Q2								
		Q3								
		Q4								
		Module - 5	00	1.2	CO5					
	a.	Write the following string matching algorithms and describe their complexity analysis.	08	L3	CO5					
		a) naïve string matching of both								
		b) Rabin-Karp string matching								
		b) Ruoni Ruip string matering								
		Make use of the Rabin-Karp string matching algorithm to search the pattern								
	b.	Make use of the Brute force string matching algorithm to search the pattern "MET"	06	L3	CO5					
		in the text "COMET".								
		State the differences between NP, NP-Complete and NP-Hard. Explain								
Q9		Satisfiability Problem								
	c.	Solve the Traveling Salesperson Problem (TSP) for the graph below using Branch	06	L3	CO4					
		and Bound.								
		(a) 2 (b)								
		Y //								
		5								
		8 7								
		OD								
	•	OR Write the formal algorithm for Knuth-Morris-Pratt string matching and describe	08	L3	CO5					
	a.	Write the formal algorithm for Knuth-Morris-Pratt string matching and describe its complexity analysis. Make use of the Knuth-Morris-Pratt string matching	08	LS	COS					
		algorithm to search the pattern "YYZY" in the text "YYZYYXYYWYYZY".								
Q10	b.	Make use of the Brute force string matching algorithm to search the pattern "ICE"	06	L3	CO5					
	υ.	in the text "DEVICE".		13	203					
		Show that the Clique Decision Problem is NP-Complete.								
-		1 1	·	1	1					

c.	Solve the following Knapsack Problem using Branch and Bound with knapsack capacity W=.6.							CO4
		Items	Weight	Value				
		1	2	8				
		2	3	6				
		3	2	4				

_****