USN

MANGALORE INSTITUTE OF TECHNOLOGY & ENGINEERING

(A Unit of Rajalaxmi Education Trust®, Mangalore)
Autonomous Institute affiliated to VTU, Belagavi, Approved by AICTE, New Delhi Accredited by NAAC with A+ Grade & ISO 9001:2015 Certified Institution

Model Question Paper

Fifth Semester B.E Degree Examination

DATABASE MANAGEMENT SYSTEM

Time: 3 Hours (180 Minutes)

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. M: Marks, L: RBT (Revised Bloom's Taxonomy) level, C: Course outcomes.

		2. 17. 17. 17. 17. 17. 17. 17. 17. 17. 17			
		Module -1	M	L	C
	a.	Compare the traditional file system approach with a Database Management			
		System (DBMS). Highlight the key limitations of early file systems and	6	L2	CO1
		explain the major advantages of adopting the database approach.			
Q1	b.	Explain the three-schema architecture of a DBMS with the help of a neat			
Q1		diagram. Discuss the significance of each level in providing abstraction.	8	L2	CO1
	c.	Describe the different types of user-friendly DBMS interfaces. Also, explain			
		the categories of database users and the types of interfaces they typically			
		use.	6	L2	CO1
		OR			
	a.	Explain the component modules of a DBMS. With the help of a neat			
		diagram, describe how these modules interact with each other in database			
		management.	8	L2	CO1
Q2	b.	Explain the three-tier architecture and the n-tier architecture of web			
		applications that include a database.	6	L2	CO1
	c.	Describe the client-server architecture of a database system. Explain the			
		roles of client and server with an illustrative diagram.	6	L2	CO1
		Module- 2			
	a.	i) Define entity sets and weak entity sets.			
		ii) Draw an ER diagram for a hospital management system with entities:			
		Patient, Doctor, Appointment, and Treatment. Specify the keys and	10	L3	CO2
		relationships clearly.			
	b.	i) Explain the types of attributes in ER modeling with suitable examples.			
		ii) For the following schema:			
Q3		STUDENT (USN, Name, Dept, Semester)			
		COURSE (CourseID, CourseName, Credits)			
		ENROLLS (USN, CourseID, Grade)	10	L3	CO2
		Express the following queries in Relational Algebra:			
		• List all students enrolled in the course "DBMS".			
		Find students who have enrolled in more than one course.			
		Retrieve names of students who have not enrolled in any course.			
		OR		ı	1
	a.	i) Explain <i>unary</i> and <i>binary</i> operations in relational algebra with examples.			
		ii) For the relations EMPLOYEE (EmpID, Name, Dept, Salary) and			
Q4		DEPARTMENT (Dept, Location), write relational algebra expressions to:			
		• Find employees working in the "HR" department.	1.0		a a a
		• Find employees earning more than 50,000.	10	L3	CO2

23ICPC302

		251CFC302			
		List departments that have no employees.			
-	b.	What is ER-to-Relational Mapping? Briefly explain the mapping steps. ii) Convert the following ER diagram into relational schemas with appropriate primary and foreign keys: Entities: Book (BookID, Title, Publisher), Author (AuthorID, Name) Relationship: Writes (BookID, AuthorID, Year).	10	L3	CO2
		Module – 3	•	•	
	a.	Given the relation R(StudentID, StudentName, Dept, CourseID, CourseName, Instructor) with the following functional dependencies: • StudentID → StudentName, Dept • CourseID → CourseName, Instructor • StudentID, CourseID → (marks of enrollment assumed) Normalize the relation step by step up to 3NF.	8	L3	CO3
Q5	b.	Consider the following unnormalized relation: StudentCourse(StudentID, StudentName, Dept, CourseID, CourseName, Instructor) i) Illustrate with examples how update, insertion, and deletion anomalies can occur in this schema. ii) Normalize the schema up to 3NF to eliminate these anomalies, and show the new relations.	6	L3	CO3
	c.	Consider a relation R(EmpID, EmpName, DeptID, DeptName, Location) with FDs: • EmpID → EmpName, DeptID • DeptID → DeptName, Location Decompose R into BCNF and show that the decomposition is lossless and dependency-preserving.	6	L3	CO3
		OR		1	
	a.	A database relation $R(A, B, C, D, E)$ has the following dependencies: • $A \rightarrow B$ • $B \rightarrow C$ • $A \rightarrow D, E$ Identify the candidate keys of R and decompose it into $2NF$ and then $3NF$.	8	L3	CO3
Q6 -	b.	Differentiate between 3NF and BCNF with a suitable example. Show a case where a relation is in 3NF but not in BCNF, and then decompose it into BCNF.	6	L3	СОЗ
	c.	Define Multivalued Dependency (MVD) with an example. Given the relation R(Student, Course, Hobby), show why this violates 4NF, and normalize it into 4NF relations.	6	L3	СОЗ
		Module – 4			
Q7	a.	What are DML, DDL, DCL? Create a table Product(ProductID, Name, Price, Stock, CategoryID) with the following constraints: • ProductID as Primary Key • Price must be greater than 0 • Stock should be non-negative Write the SQL DDL statement with constraints.	8	L3	CO4
	b.	Given the relation Book(BookID, Title, Author, Price, PublisherID), write			

		23ICPC302	ı		
		an SQL query to display the publisher IDs that have published more than 5 books priced above 500.	6	L3	CO4
	c.	Consider Customer(CustID, Name, City) and Order(OrderID, CustID, Amount). Write an SQL query to find the names of customers who placed orders with	6	L3	CO4
		an amount greater than the average order amount of all customers.			
		OR			
	a.	Describe the various types of join operations available in SQL with suitable examples.			
		Given Teacher(TID, TName, DeptID) and Course(CID, Title, DeptID),	8	L3	CO4
		write a query to display the names of teachers who do not teach any course (use LEFT OUTER JOIN).			
	b.	What is a trigger in SQL? Explain its purpose and working with an			
Q8		example. For the table Account(AccNo, Balance), write a trigger that prevents the	6	L3	CO4
Qu		balance from going below 1000 during an UPDATE or INSERT. If violated,	0		COT
		the transaction should be cancelled.			
	c.	What is a view in SQL? Explain its use.			
		Create a view named HighSalary that displays employee names and salaries			
		from Employee(EmpID, Name, Salary) for those earning above 75,000.	6	L3	CO4
		Then write a DCL command to grant SELECT access on this view to a role HR_Manager.			
		Module - 5			
Q9	a.	Explain ACID properties of transactions with suitable examples. Why are they important for transaction management?	10	L2	CO1
	b.	Describe the Two-Phase Locking (2PL) protocol. How does it ensure serializability? Discuss its limitations.	10	L2	CO1
		OR		•	
Q10	a.	Explain recovery techniques in DBMS with emphasis on Shadow Paging and	10		G0.1
		the ARIES Recovery Algorithm.	10	L2	CO1
	b.	Differentiate between conflict serializability and view serializability. Illustrate with an example schedule.	10	L2	CO1

_****