

MANGALORE INSTITUTE OF TECHNOLOGY & ENGINEERING

(A Unit of Rajalaxmi Education Trust®, Mangalore)

Autonomous Institute affiliated to VTU, Belagavi, Approved by AICTE, New Delhi

Accredited by NAAC with A+ Grade & ISO 9001:2015 Certified Institution

Model Question Paper

Third Semester MCA Degree Examination

Computer Vision

Time: 3 Hours

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.
2. M: Marks, L: RBT (Revised Bloom's Taxonomy) level, C: Course outcomes.

Module -1			M	L	C					
Q1	a.	<p>A 3D point $P(2,3,5)$ is:</p> <p>Rotated 90° counterclockwise about the Z-axis.</p> <p>Translated by $(+4, -2, +1)$.</p> <p>Projected onto the XY-plane using orthographic projection.</p> <p>Perform the transformations in sequence and calculate the final projected coordinates.</p>	10	L3	CO1					
	b.	<p>Given a pinhole camera model with focal length $f=50$ mm and a 3D point $(X=100, Y=50, Z=500)$,</p> <p>Compute the projected 2D image coordinates.</p>	10	L3	CO1					
OR										
Q2	a.	<p>A periodic pattern has a spatial frequency of 8 cycles/mm.</p> <p>A camera sensor has a pixel pitch of 0.05 mm.</p> <p>Calculate the sampling frequency in cycles/mm.</p> <p>Determine if aliasing will occur using the Nyquist theorem.</p> <p>If aliasing occurs, calculate the aliased frequency.</p>	10	L3	CO1					
	b.	<p>A smartphone camera captures images, processes color, compresses data, and stores photos.</p> <p>Apply digital camera pipeline and explain how the following work together:</p> <ul style="list-style-type: none"> • Image formation • Sampling • Color processing • Compression 	10	L3	CO1					
Module 2										
Q3	a.	An image has the following gray levels and their probabilities:	10	L3	CO2					
		<table style="width: 100%; border-collapse: collapse;"> <thead> <tr> <th style="text-align: center;">Gray Level rk</th><th style="text-align: center;">Probability $p(rk)$</th></tr> </thead> <tbody> <tr> <td style="text-align: center;">0</td><td style="text-align: center;">0.10</td></tr> <tr> <td style="text-align: center;">1</td><td style="text-align: center;">0.20</td></tr> </tbody> </table>	Gray Level rk	Probability $p(rk)$	0	0.10	1	0.20		
Gray Level rk	Probability $p(rk)$									
0	0.10									
1	0.20									

		2 3	0.40 0.30			
	b.	Perform histogram equalization and find the new gray levels after transformation. Show all steps.				

$$I = 0.299R + 0.587G + 0.114B$$

Apply a contrast stretching transform to map the intensity range [50, 200] to [0, 255]. Show all the calculations.

10 L3 CO2

OR

	a.	A point (3,4) is scaled by a factor of 2 and rotated by 90°. Apply transformation techniques and compute the new coordinates.	10	L3	CO2
Q4	b.	A 1D signal $f(x) = [4, 0, 2, 0]$ is given. Compute its Discrete Fourier Transform (DFT). Apply an ideal low-pass filter that keeps only the lowest 2 frequency components and sets the rest to zero. Compute the inverse DFT to get the filtered signal.	10	L3	CO2

Module – 3

	a.	Two feature points are detected in image A: $P_1(4, 7)$, $P_2(6, 5)$ and their possible matches in image B: $Q_1(5, 8)$, $Q_2(8, 6)$. Using Euclidean distance, calculate which point in image B matches best with each point in image A. Show all calculations.	10	L3	CO3
Q5	b.	Given the following image patch (pixel intensities): $\begin{bmatrix} 100 & 102 & 104 \\ 98 & 100 & 102 \\ 96 & 98 & 100 \end{bmatrix}$ Apply the Sobel operator with $G_x = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$ and $G_y = \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix}$ to find the gradient magnitude at the center pixel.	10	L3	CO3

OR

	a.	In the Hough transform, a line is detected at parameters: $\rho=10, \theta=45^\circ$ Write the equation of the line in the form $y=mx+c$. Show step-by-step derivation from Hough parameters to slope–intercept form.	10	L3	CO3
Q6	b.	Two lines in an image are given by: Line 1: $y = 2x + 3$ Line 2: $y = -x + 9$ Find the vanishing point (intersection point) of these lines by solving the	10	L3	CO3

		equations. Show all steps.										
Module – 4												
Q7	a.	<p>Two-Frame Structure from Motion – Triangulation Two calibrated cameras observe the same 3D point.</p> <ul style="list-style-type: none"> • Camera 1 center: $C1=(0,0,0)$, focal length = 1.0 • Camera 2 center: $C2=(1,0,0)$, focal length = 1.0 • Image coordinates in Camera 1: $(u_1, v_1)=(0.2, 0.3)$ • Image coordinates in Camera 2: $(u_2, v_2)=(-0.1, 0.25)$ <p>Using triangulation, compute the 3D coordinates of the point. Show all steps.</p>	10	L3	CO4							
	b.	<p>You are given the following measurement matrix W for 3D points across 2 frames (values are in pixels):</p> $W = \begin{bmatrix} 1.0 & 2.0 & 3.0 \\ 1.5 & 2.5 & 3.5 \\ 0.5 & 1.0 & 1.5 \\ 0.7 & 1.2 & 1.7 \end{bmatrix}$ <p>Using the Tomasi–Kanade factorization method, compute the rank-3 approximation of W (show SVD steps).</p>	10	L3	CO4							
OR												
Q8	a.	<p>Given two 1D image patches:</p> <p>Frame 1: [100,102,105,110] Frame 2: [102,105,110,115]</p> <p>Estimate the translation t between Frame 1 and Frame 2 by minimizing the sum of squared differences (SSD) for integer shifts.</p>	10	L3	CO4							
	b.	<p>An affine motion model is given by:</p> $\begin{cases} x' = a_1x + a_2y + a_3 \\ y' = a_4x + a_5y + a_6 \end{cases}$ <p>From the following correspondences:</p> <table style="margin-left: 200px;"> <tr> <td>x,y</td> <td>x',y'</td> </tr> <tr> <td>(1, 2)</td> <td>(2, 4)</td> </tr> <tr> <td>(2, 1)</td> <td>(3, 3)</td> </tr> <tr> <td>(3, 2)</td> <td>(4, 5)</td> </tr> </table> <p>Formulate the equations and solve for the affine parameters a_1, a_2, \dots, a_6.</p>	x,y	x',y'	(1, 2)	(2, 4)	(2, 1)	(3, 3)	(3, 2)	(4, 5)	10	L3
x,y	x',y'											
(1, 2)	(2, 4)											
(2, 1)	(3, 3)											
(3, 2)	(4, 5)											
Module – 5												
Q9	a.	<p>Face Recognition – Eigenfaces Projection</p> <p>You are given an average face vector:</p> $\mu = [100, 120, 90] \quad e = [0.5, -0.5, 0.7]$ <p>An eigenface vector and a new face image vector:</p> <p>Step 1: Subtract the mean face (μ) from the new face vector (x). Step 2: Project the result onto the eigenface vector e to get the weight w. Show all calculations.</p>	10	L3	CO5							
	b.	<p>Two sets of matched feature points (before alignment) are:</p> <p>Image A: (10, 20), (15, 25), (20, 30) Image B: (12, 22), (17, 26), (22, 32)</p> <p>Using Euclidean distance, calculate the average alignment error between the two sets of points.</p>	10	L3	CO5							
OR												
Q10	a.	<p>A visual vocabulary of size 4 is used: $\{V_1, V_2, V_3, V_4\}$. A test image's local features are assigned to visual words in the order:</p>										

	V ₂ , V ₂ , V ₁ , V ₄ , V ₂ , V ₃ , V ₁ . • Create the normalized histogram (each bin divided by total count). • Show your calculation step-by-step.	10	L3	CO5
b.	An object recognition algorithm is tested on 5 segmented regions in an image. The ground truth labels are: Cat, Dog, Dog, Cat, Bird The predicted labels are: Cat, Dog, Cat, Cat, Bird • Compute the recognition accuracy (%) considering segmentation results.	10	L3	CO5